
How to use ICC12 with Adapt9S12E128 and uBUG12

This document will demonstrate the use of ImageCraft ICC12 Version 6 C
compiler with Technological Arts’ Adapt9S12E128 module. uBUG12 is used to
erase and program flash memory after the compilation of a test program with
ICC12. While other methods can be used to erase and program flash, this
example will focus on uBUG12.

This document assumes that the user is already familiar with programming in C.
It also assumes that the Serial Monitor has not been erased and is presently in
the 9S12E128 MCU.

ImageCraft Links:

http://www.imagecraft.com/software/
http://www.ece.utexas.edu/%7Evalvano
http://www.dragonsgate.net/FAQ/cache/20.html
http://www.imagecraft.com/software/mdevtools.html
http://www.dragonsgate.net/mailman/listinfo

Technological Arts Links:

http://www.technologicalarts.com/myfiles/AD9S12E128.html
http://support.technologicalarts.ca/files/uBug12.zip
http://www.technologicalarts.com/myfiles/manuals/ad9s12e128man.pdf

Getting Started:

Double click on the ICC12 icon. If you have not read the ICC12 manual yet, and
you just opened the IDE, you will no doubt wonder what to do next. Well wonder
no more.

Note the three window panes. The top left pane is greyed out and the right pane
displays the project window. The bottom left pane is where the error messages
are displayed during compilation.

Before creating a new Project, the hardware target in the Compiler Options must
be setup properly for the target MCU. This is to ensure that the compiler will
know where program memory, data memory, and registers are located during the
linking process. In this example it is Adapt9S12E128.

Compiler Setup:

Click on Project Menu – Options – Target Tab.

Please note the Device Configuration. Click on the pull down arrow to change
the device type.

Scroll up or down to select Custom as shown. You may notice that an E128
Device Configuration already exists. Unfortunately, the addresses are not setup
properly for using with the Serial Monitor. Therefore Custom configuration must
be selected and the memory parameters must be.

Custom Device Configuration:

Program Memory: 0x4000.0x7FFF:0xC000.0xFFFF
Data Memory: 0x2000
Stack Pointer: 0x4000

Expanded Memory:

Note the address range is 0xE0000. 0xF7FFF. That implies that the valid
PPAGE range is from $38 to $3D. PPAGE $3E and $3F correspond to the fixed
memory area, and are allocated to 0x4000.0x7FFF:0xC000.0xFFFF

On the compiler tab there are several choices of S-record output as shown.
Select one that suits you.

Starting a new Project:

Once the compiler options are setup, a new project can be created. Click Project
menu – New.

ICC12 will prompt to save the new project. You’ll need to decide whether to
create a new directory to save the new project. In this example a new directory
called Test was created and the file was saved as test.prj.

Type the filename test.prj and click on the Save button.

Note that the project window has changed to add Files, Headers and Documents.

Adding new files to the project:

To add files to the project, click on the File menu and select New, as shown.

Note that ICC12 created an untitled file. Save the file as BlinkLED.C.

To save, click on File menu – Save As

ICC12 will open an explorer window to help save the file. Type BlinkLED.c then
press the save button.

Now you’ll see that ICC12 has renamed the file to BlinkLED.c.

To add BlinkLED.c to the Project, click on the Project menu and select Add
File(s)

ICC12 will open an explorer window to help you locate the file of interest.

You’ll notice that the right window pane has changed to include BlinkLED.c in the
Project Files list.

Locate vectors.c and copy it to Test directory. The main reason to do this is
project dependencies. It is not good to keep editing a global vectors.c if other
projects are using this same file. It becomes a problem to keep track of the
changes made to the different projects.

To add vectors.c to the Project, click on the Project menu – Add File(s)

Note that the Project Files list has updated to include vectors.c It is important to
note that the default vectors.c included with ICC12 was written for the
68HC912B32 and 812A4 MCUs. Technically, you should edit the file to include
other interrupt service routine (ISR) addresses specific to the 9S12E128. For
this example, though, we’ll use the file “as is”.

Enter the lines of program code shown below into the BlinkLED.c file. The next
step is to compile/make/build the code. Note: HCS12E128.H can be found at the
end of this document.

#include "HCS12E128.H"

void blink_delay(void);
void main()
{
 int i;

 DDRP = 0xFF;
 PTP = 0xFF;

 blink_delay();

 while(1)
 {

 PTP = 0xFF; //LED on
 blink_delay();
 PTP = 0x00; //LED off
 blink_delay();
 }

}

void blink_delay(void)
{
 int i;
 for(i=0;i<64000;i++)
 {
 ;
 }
}

Compile/Build/Make the file:

To make the file, click Project menu and select Make Project, as shown.

You’ll notice that the bottom window pane shows messages to display how the
build progressed. Any errors will be shown in this window. In this case, the build
completed without error, so we can move on to erasing and programming the
9S12E128.

Note in passing that some other intermediate files are created during a Make.

Use WordPad to open and inspect the content of test.s19

S10E4000CF3FFF16405587CE20008EF6
S110400B200027056A000820F6CE405ACD9B
S111401820008E405A2706180A307020F51634
S1074026402A20FE0A
S110402A34B7751B9EC6FF7B025AC6FF7B90
S110403702584A8000382010C6FF7B025852
S10D40444A8000387902584A8000CF
S10A404E3820EEB757303DA6
S21138800034B7751B9ECC00006C1EEC1EC3FA
S21238800D00016C1EEC1E8C03E82DF2B75730BF
S20538801B0A1D
S111FFD0FFFFFFFFFFFFFFFFFFFFFFFFFFFF2D
S111FFDEFFFFFFFFFFFFFFFFFFFFFFFFFFFF1F
S111FFECFFFFFFFFFFFFFFFFFFFFFFFFFFFF11
S109FFFAFFFFFFFF4000C1
S10840551D0016073DEB
S9034000BC

If you look closely at the S-record you’ll see a mixture of S1 and S2 lines. This is
a typical file of S-records generated by ICC12. S1 records are programmed in
the 0x4000 – 0x7FFF and 0xC000 – 0xFFFF memory blocks. ISRs are always
placed in the fixed memory region. An ISR can call any routine inside a PPAGE
when necessary. S2 records can also reference fixed memory regions, but are
typically paged by ICC12

Below is the vector address as S1 record.

S111FFD0FFFFFFFFFFFFFFFFFFFFFFFFFFFF2D
S111FFDEFFFFFFFFFFFFFFFFFFFFFFFFFFFF1F
S111FFECFFFFFFFFFFFFFFFFFFFFFFFFFFFF11
S109FFFAFFFFFFFF4000C1

Note the address at 0xFFFE|0xFFFF contains 0x4000, telling the MCU where to
start executing code following power up or RESET.

S109FFFAFFFFFFFF4000C1

The S-record below shows the actual first few bytes of code in the program

S10E4000CF3FFF16405587CE20008EF6

ICC12 has generated a banked S2 record.

S21138800034B7751B9ECC00006C1EEC1EC3FA

PPAGE = 0x38

S21138800034B7751B9ECC00006C1EEC1EC3FA

Memory address = 0x8000.

Programming:

This document assumes that the Serial monitor is present on Adapt9S12E128. If
not, you’ll need to loda it into flash using a BDM pod. That procedure is beyond
the scope of this document.

Find uBug12 on the CD that came with your evaluation or demo package. If you
don’t have it, you can download uBUG12 from Technological Arts, at
http://support.technologicalarts.ca/files/uBug12.zip

For Windows98 users the .NET framework must be installed before running
uBUG12. The Microsoft site link is

http://www.microsoft.com/downloads/details.aspx?FamilyID=d7158dee-a83f-
4e21-b05a-009d06457787&displaylang=en

After installing uBug12, slide the Run/Load switch on Adapt9S12E128 to the
Load position, and apply power to the board.

Double click on the uBUG12 icon to launch it.

In the command bar type con 1 to connect to COM 1 (or con 2 if you’re using
COM 2). A CONNECTED message will appear to indicate that a connection
between your PC and Adapt9S12E128 has been established.

Two possible errors can occur:
Connection Error: Unable to open COM1 <- Another application is using the
COM port

Connection Error: Read Error: Timeout error <- The MCU is not currently in
LOAD mode, not powered up, or the cable is disconnected from either the PC or
the E128 board.

Now erase the flash memory by typing the command FBULK.

To load your program, type the command FLOAD ;B for banked S19, S2, SX
and formatted S19 (i.e. went thru SrecCVT program) records. To load a file
containing non-banked S2 records, the command is FLOAD.

Uploading Banked S-record:

The command to upload banked S-records is FLOAD ;B. It is important to
include the ;B option to let uBUG12 know that the S-record is banked. Make
sure you become familiar with the differences between S19, SX, S2. See
Appendix A for an explanation of S-records.

Double click on the file to initiate upload.

A good upload will show LOADED OKAY messages.

After successful programming, slide the Run/Load switch to Run and press the
reset button. The application will begin blinking the LED connected to port pin
PP0.

To disconnect uBUG12 from the serial port type the command discon.

A Disconnected message will appear to indicate that the serial port is available
for use by another application (eg. HyperTerm or Tera Term).

A list of other uBUG12 commands can be viewed by typing the help command.

The commands are pretty well self explanatory but you should try them out to be
familiar with their usage and capability.

Note that the Serial Monitor resides at 0xF800 – 0xFFFF. Therefore SerialMon
will automatically re-locate the vector addresses below $F800.

Note: For NC12 families

SerialMon moves the internal RAM to 0x3800 – 0x3FFF. Make sure your code
stack begins at 0x4000 (or at 0x3F80 if you intend to use uBUG12 as limited de-
bugger). To implement this, insert the following into your code.

STACK equ $3F80 ;Stack at below Ubug12

 movb #$00,INITRG ;set registers at $0000
 movb #$39,INITRM ;move and set ram to end at $3fff

Note: For E128 families

SerialMon moves the internal RAM to $2000 - $3FFF. Make sure your code
stack begins at $4000 or at $3F80 if you intend to use uBUG12 as limited de-
bugger. To make sure this is done you can add the code below to your code.

STACK equ $3F80 ;Stack at below Ubug12

 movb #$00,INITRG ;set registers at $0000
 movb #$39,INITRM ;move and set ram to end at $3fff

The last thing to note (E128 and C32) is the uBUG12 enabled the PLL during
Load mode. In Run mode the PLL is NOT enabled as the user maynot want this
feature enabled.

The code below shows how to enable the PLL.

OscFreq equ 8000 ;Enter Osc speed
initSYNR equ $02 ; mult by synr + 1 = 3 (24MHz)
initREFDV equ $00 ;
PLLSEL equ %10000000 ;PLL select bit
LOCK equ %00001000 ;lock status bit
PLLON equ %01000000 ;phase lock loop on bit

; Initialize clock generator and PLL
 bclr CLKSEL,PLLSEL ;disengage PLL to system
 bset PLLCTL,PLLON ;turn on PLL

 movb #initSYNR,SYNR ;set PLL multiplier
 movb #initREFDV,REFDV ;set PLL divider

 nop
 nop
 nop
 nop

 brclr CRGFLG,LOCK,*+0 ;while (!(crg.crgflg.bit.lock==1))
 bset CLKSEL,PLLSEL ;engage PLL to system

Examining the content of the MCU:

Below is the S-record (test.s19) that was programmed into the Adapt9S12E128.

S10E4000CF3FFF16405587CE20008EF6
S110400B200027056A000820F6CE405ACD9B
S111401820008E405A2706180A307020F51634

S1074026402A20FE0A
S110402A34B7751B9EC6FF7B025AC6FF7B90
S110403702584A8000382010C6FF7B025852
S10D40444A8000387902584A8000CF
S10A404E3820EEB757303DA6
S21138800034B7751B9ECC00006C1EEC1EC3FA
S21238800D00016C1EEC1E8C03E82DF2B75730BF
S20538801B0A1D
S111FFD0FFFFFFFFFFFFFFFFFFFFFFFFFFFF2D
S111FFDEFFFFFFFFFFFFFFFFFFFFFFFFFFFF1F
S111FFECFFFFFFFFFFFFFFFFFFFFFFFFFFFF11
S109FFFAFFFFFFFF4000C1
S10840551D0016073DEB
S9034000BC

These are the area of interest where the S-record is programmed to. Let us start
with the interrupt vector area. As stated previously, Serial Monitor re-locates the
vector address at below $F800.

S111FFD0FFFFFFFFFFFFFFFFFFFFFFFFFFFF2D
S111FFDEFFFFFFFFFFFFFFFFFFFFFFFFFFFF1F
S111FFECFFFFFFFFFFFFFFFFFFFFFFFFFFFF11
S109FFFAFFFFFFFF4000C1

Use uBUG12 to memory dump from $F7D0 to $F7FF by the command md f7d0
f7ff.

Note the content of the memory address at $F7FE:$F7FF is $4000, the RESET
vector.

Use uBUG12 to memory dump address $8000 to $8020 by the command md
8000 8020. Please note the PPAGE = 38 the first available PPAGE as defined
by address range 0xE0000 to 0xF7FFF.

S211 38 8000 34B7751B9ECC00006C1EEC1EC3 FA
S212 38 800D 00016C1EEC1E8C03E82DF2B75730 BF
S205 38 801B 0A 1D

Change the PPAGE (PP) to $38 using the command pp 38 then a memory dump
of the content from $8000 to $8020 as shown. Note the content are the same.

The content of address beginning at $4000 to $4050

S10E 4000 CF3FFF16405587CE20008E F6
S110 400B 200027056A000820F6CE405ACD 9B
S111 4018 20008E405A2706180A307020F516 34
S107 4026 402A20FE 0A
S110 402A 34B7751B9EC6FF7B025AC6FF7B 90
S110 4037 02584A8000382010C6FF7B0258 52
S10D 4044 4A8000387902584A8000 CF
S10A 404E 3820EEB757303D A6

Note that the memory dump is the same as the S-record.

This concludes the use of ICC12 from erasing and programming FLASH with
using uBUG12.

HCS12E128.H

#ifndef __HCS12E128_H
#define __HCS12E128_H

/* macros, generic #define etc.
 */
#include <hc12def.h>

/* base address of register block, change this if you relocate the register
 * block. This is for S12E128 !
 */

#define _IO_BASE 0
#define _ADDR(off) (unsigned char volatile *)(_IO_BASE + off)
#define _P(off) *(unsigned char volatile *)(_IO_BASE + off)
#define _LP(off) *(unsigned short volatile *)(_IO_BASE + off)

#define PORTA _P(0x00)
#define PORTB _P(0x01)
#define DDRA _P(0x02)
#define DDRB _P(0x03)

//#define Reserved _P(0x04)
//#define Reserved _P(0x05)
//#define Reserved _P(0x06)
//#define Reserved _P(0x07)

#define PORTE _P(0x08)
#define DDRE _P(0x09)
#define PEAR _P(0x0A)
#define MODE _P(0x0B)
#define PUCR _P(0x0C)
#define RDRIV _P(0x0D)
#define EBICTL _P(0x0E)

//#define reserved _P(0x0F)

#define INITRM _P(0x10)
#define INITRG _P(0x11)
#define INITEE _P(0x12)
#define MISC _P(0x13)
#define MTST0 _P(0x14)
#define ITCR _P(0x15)
#define ITEST _P(0x16)
#define MIST1 _P(0x17)

//#define Reserved _P(0x18)
#define VREGCTRL _P(0x19)

#define PARTIDH _P(0x1A)
#define PARTIDL _P(0x1B)
#define PARTID _LP(0x1A)

#define MEMSIZ0 _P(0x1C)
#define MEMSIZ1 _P(0x1D)
#define INTCR _P(0x1E)
#define HPRIO _P(0x1F)

#define BDGC1 _P(0x20)
#define DBGCS _P(0x21)
#define DBGTBH _P(0x22)
#define DBGTBL _P(0x23)
#define DBGCNT _P(0x24)
#define DBGCCX _P(0x25)
#define DBGCCH _P(0x26)
#define DBGCCL _P(0x27)

#define BKPCT0 _P(0x28)
#define BKPCT1 _P(0x29)
#define BKP0X _P(0x2A)
#define BKP0H _P(0x2B)
#define BKP0L _P(0x2C)
#define BKP0 _LP(0x2B)

#define BKP1X _P(0x2D)
#define BKP1H _P(0x2E)
#define BKP1L _P(0x2F)
#define BKP1 _LP(0x2E)

#define PPAGE _P(0x30)

//#define RESERVED _P(0x31)
//#define RESERVED _P(0x32)
//#define RESERVED _P(0x33)

#define SYNR _P(0x34)
#define REFDV _P(0x35)
#define CTFLG _P(0x36)
#define CRGFLG _P(0x37)
#define CRGINT _P(0x38)
#define CLKSEL _P(0x39)

#define PLLCTL _P(0x3A)
#define RTICTL _P(0x3B)
#define COPCTL _P(0x3C)
#define FORBYP _P(0x3D)
#define CTCTL _P(0x3E)
#define ARMCOP _P(0x3F)

#define T0IOS _P(0x40)
#define T0CFORC _P(0x41)
#define T0OC7M _P(0x42)
#define T0OC7D _P(0x43)

#define T0CNT _LP(0x44)

#define T0SCR1 _P(0x46)
#define T0TOV _P(0x47)
#define T0CTL1 _P(0x48)
#define T0CTL2 _P(0x49)
#define T0CTL3 _P(0x4A)
#define T0CTL4 _P(0x4B)
#define T0IE _P(0x4C)
#define T0SCR2 _P(0x4D)
#define T0FLG1 _P(0x4E)
#define T0FLG2 _P(0x4F)

//#define RESERVED _LP(0x50)
//#define RESERVED _LP(0x52)
//#define RESERVED _LP(0x54)
//#define RESERVED _LP(0x56)

#define T0C4 _LP(0x58)
#define T0C5 _LP(0x5A)
#define T0C6 _LP(0x5C)
#define T0C7 _LP(0x5E)

#define P0ACTL _P(0x60)
#define P0AFLG _P(0x61)
#define P0ACNTH _P(0x62)
#define P0ACNTL _P(0x63)
#define P0ACNT _LP(0x62)

//#define Reserved _P(0x64 - 7F)

#define ATD0CTL0 _P(0x80)
#define ATD0CTL1 _P(0x81)
#define ATD0CTL2 _P(0x82)

#define ATD0CTL3 _P(0x83)
#define ATD0CTL4 _P(0x84)
#define ATD0CTL5 _P(0x85)

#define ATD0STAT0 _P(0x86)
//#define Reserved _P(0x87)
#define ATDTEST0 _P(0x88)
#define ATDTEST1 _P(0x89)
#define ATD0STAT1 _P(0x8A)
#define ATD1STAT1 _P(0x8B)
#define ATDDIEN0 _P(0x8C)
#define ATDDIEN1 _P(0x8D)

#define PORTAD0 _P(0x8E)

#define PORTAD1 _P(0x8F)

#define ATDDR0H _P(0x90)
#define ATDDR0L _P(0x91)
#define ATDDR0 _LP(0x90)

#define ATDDR1H _P(0x92)
#define ATDDR1L _P(0x93)
#define ATDDR1 _LP(0x92)

#define ATDDR2H _P(0x94)
#define ATDDR2L _P(0x95)
#define ATDDR2 _LP(0x94)

#define ATDDR3H _P(0x96)
#define ATDDR3L _P(0x97)
#define ATDDR3 _LP(0x96)

#define ATDDR4H _P(0x98)
#define ATDDR4L _P(0x99)
#define ATDDR4 _LP(0x98)

#define ATDDR5H _P(0x9A)
#define ATDDR5L _P(0x9B)
#define ATDDR5 _LP(0x9A)

#define ATDDR6H _P(0x9C)
#define ATDDR6L _P(0x9D)
#define ATDDR6 _LP(0x9C)

#define ATDDR7H _P(0x9E)

#define ATDDR7L _P(0x9F)
#define ATDDR7 _LP(0x9E)

#define ATDDR8H _P(0xA0)
#define ATDDR8L _P(0xA1)
#define ATDDR8 _LP(0xA0)

#define ATDDR9H _P(0xA2)
#define ATDDR9L _P(0xA3)
#define ATDDR9 _LP(0xA2)

#define ATDDR10H _P(0xA4)
#define ATDDR10L _P(0xA5)
#define ATDDR10 _LP(0xA4)

#define ATDDR11H _P(0xA6)
#define ATDDR11L _P(0xA7)
#define ATDDR11 _LP(0xA6)

#define ATDDR12H _P(0xA8)
#define ATDDR12L _P(0xA9)
#define ATDDR12 _LP(0xA8)

#define ATDDR13H _P(0xAA)
#define ATDDR13L _P(0xAB)
#define ATDDR13 _LP(0xAA)

#define ATDDR14H _P(0xAC)
#define ATDDR14L _P(0xAD)
#define ATDDR14 _LP(0xAC)

#define ATDDR15H _P(0xAE)
#define ATDDR15L _P(0xAF)
#define ATDDR15 _LP(0xAE)

#define SCI0BDH _P(0xC8)
#define SCI0BDL _P(0xC9)
#define SCI0BD _LP(0xC8)

#define SC0CR1 _P(0xCA)
#define SCI0CR1 _P(0xCA)
#define SCI0CR2 _P(0xCB)

#define SCI0SR1 _P(0xCC)
#define SC0SR1 SCI0SR1 /* compatability */

#define SC0SR2 _P(0xCD)
#define SCI0SR2 _P(0xCD)

#define SCI0DRH _P(0xCE)
#define SCI0DRL _P(0xCF)
#define SC0DRL SCI0DRL /* compatability */
#define SCI0DR _LP(0xCE)

#define SCI1BDH _P(0xD0)
#define SCI1BDL _P(0xD1)
#define SCI1BD _LP(0xD0)

#define SCI1CR1 _P(0xD2)
#define SCI1CR2 _P(0xD3)
#define SCI1SR1 _P(0xD4)
#define SCI1SR2 _P(0xD5)

#define SCI1DRH _P(0xD6)
#define SCI1DRL _P(0xD7)
#define SCI1DR _LP(0xD6)

#define SPICR1 _P(0xD8)
#define SPICR2 _P(0xD9)
#define SPIBR _P(0xDA)
#define SPISR _P(0xDB)

//#define Reserved _P(0xDC)

#define SPIDR _P(0xDD)

//#define Reserved _P(0xDE)
//#define Reserved _P(0xDF)

#define IBAD _P(0xE0)
#define IBFD _P(0xE1)
#define IBCR _P(0xE2)
#define IBSR _P(0xE3)
#define IICDR _P(0xE4)

//#define Reserved _P(0xE5)
//#define Reserved _P(0xE6)
//#define Reserved _P(0xE7)

#define SCI2BDH _P(0xE8)
#define SCI2BDL _P(0xE9)
#define SCI2BD _LP(0xE8)

#define SCI2CR1 _P(0xEA)
#define SCI2CR2 _P(0xEB)
#define SCI2SR1 _P(0xEC)
#define SCI2SR2 _P(0xED)

#define SCI2DRH _P(0xEE)
#define SCI2DRL _P(0xEF)
#define SCI2DR _LP(0xEE)

#define DAC0C0 _P(0xF0)
#define DAC0C1 _P(0xF1)
#define DAC0DL _P(0xF2)
#define DAC0DR _P(0xF3)

#define DAC1C0 _P(0xF4)
#define DAC1C1 _P(0xF5)
#define DAC1DL _P(0xF6)
#define DAC1DR _P(0xF7)

#define FCLKDIV _P(0x0100)
#define FSEC _P(0x0101)
#define C0BTR0 _P(0x0102)

//#define Reserved for Factory Test _P(0x0102)

#define FCNFG _P(0x0103)
#define FPROT _P(0x0104)
#define FSTAT _P(0x0105)
#define FCMD _P(0x0106)

//#define Reserved _P(0x0107 - 013F)

#define T1IOS _P(0x140)
#define T1CFORC _P(0x141)
#define T1OC7M _P(0x142)
#define T1OC7D _P(0x143)

#define T1CNT _LP(0x144)

#define T1SCR1 _P(0x146)
#define T1TOV _P(0x147)
#define T1CTL1 _P(0x148)
#define T1CTL2 _P(0x149)

#define T1CTL3 _P(0x14A)
#define T1CTL4 _P(0x14B)
#define T1IE _P(0x14C)
#define T1SCR2 _P(0x14D)
#define T1FLG1 _P(0x14E)
#define T1FLG2 _P(0x14F)

//#define RESERVED _LP(0x50)
//#define RESERVED _LP(0x52)
//#define RESERVED _LP(0x54)
//#define RESERVED _LP(0x56)

#define T1C4 _LP(0x158)
#define T1C5 _LP(0x15A)
#define T1C6 _LP(0x15C)
#define T1C7 _LP(0x15E)

#define P1ACTL _P(0x160)
#define P1AFLG _P(0x161)
#define P1ACNTH _P(0x162)
#define P1ACNTL _P(0x163)
#define P1ACNT _LP(0x162)

//#define RESERVED 0x164-0x17F
#define T2IOS _P(0x180)
#define T2CFORC _P(0x181)
#define T2OC7M _P(0x182)
#define T2OC7D _P(0x183)

#define T2CNT _LP(0x184)

#define T2SCR1 _P(0x186)
#define T2TOV _P(0x187)
#define T2CTL1 _P(0x188)
#define T2CTL2 _P(0x189)
#define T2CTL3 _P(0x18A)
#define T2CTL4 _P(0x18B)
#define T2IE _P(0x18C)
#define T2SCR2 _P(0x18D)
#define T2FLG1 _P(0x18E)
#define T2FLG2 _P(0x18F)

//#define RESERVED _LP(0x50)
//#define RESERVED _LP(0x52)
//#define RESERVED _LP(0x54)
//#define RESERVED _LP(0x56)

#define T2C4 _LP(0x198)
#define T2C5 _LP(0x19A)
#define T2C6 _LP(0x19C)
#define T2C7 _LP(0x19E)

#define P2ACTL _P(0x1A0)
#define P2AFLG _P(0x1A1)
#define P2ACNTH _P(0x1A2)
#define P2ACNTL _P(0x1A3)
#define P2ACNT _LP(0x1A2)

//#define RESERVED 0x1B0 - 0x1DF

#define PWME _P(0x1E0)
#define PWMPOL _P(0x1E1)
#define PWMCLK _P(0x1E2)
#define PWMPRCLK _P(0x1E3)
#define PWMCAE _P(0x1E4)
#define PWMCTL _P(0x1E5)
#define PWMTST _P(0x1E6)
#define PWMPRSC _P(0x1E7)
#define PWMSCLA _P(0x1E8)
#define PWMSCLB _P(0x1E9)
#define PWMSCNTA _P(0x1EA)
#define PWMSCNTB _P(0x1EB)
#define PWMCNT0 _P(0x1EC)
#define PWMCNT1 _P(0x1ED)
#define PWMCNT2 _P(0x1EE)
#define PWMCNT3 _P(0x1EF)
#define PWMCNT4 _P(0x1F0)
#define PWMCNT5 _P(0x1F1)
#define PWMPER0 _P(0x1F2)
#define PWMPER1 _P(0x1F3)
#define PWMPER2 _P(0x1F4)
#define PWMPER3 _P(0x1F5)
#define PWMPER4 _P(0x1F6)
#define PWMPER5 _P(0x1F7)
#define PWMDTY0 _P(0x1F8)
#define PWMDTY1 _P(0x1F9)
#define PWMDTY2 _P(0x1FA)
#define PWMDTY3 _P(0x1FB)
#define PWMDTY4 _P(0x1FC)
#define PWMDTY5 _P(0x1FD)

//#define RESERVED 0x1FE - 0x1FF

#define PMFCFG0 _P(0x200)
#define PMFCFG1 _P(0x201)
#define PMFCFG2 _P(0x202)
#define PMFCFG3 _P(0x203)
#define PMFFCTL _P(0x204)
#define PMFFPIN _P(0x205)
#define PMFFSAT _P(0x206)
#define PMFQSMP _P(0x207)
#define PMFDMPA _P(0x208)
#define PMFDMPB _P(0x209)
#define PMFDMPC _P(0x20A)
#define PMFOUTC _P(0x20C)
#define PMFOUTB _P(0x20D)
#define PMFDTMS _P(0x20E)
#define PMFCCTL _P(0x20F)
#define PMFVAL0 _LP(0x210)
#define PMFVAL1 _LP(0x212)
#define PMFVAL2 _LP(0x214)
#define PMFVAL3 _LP(0x216)
#define PMFVAL4 _LP(0x218)
#define PMFVAL5 _LP(0x21A)
#define PMFENCA _P(0x220)
#define PMFFQCA _P(0x221)
#define PMFCNTA _LP(0x222)
#define PMFMODA _LP(0x224)
#define PMFDTMA _LP(Ox226)
#define PMFENCB _LP(Ox228)
#define PMFCNTB _LP(Ox22A)
#define PMFMODB _LP(Ox22C)
#define PMFENCC _P(Ox230)
#define PMFFQCC _P(Ox231)
#define PMFCNTC _LP(Ox232)
#define PMFMODC _LP(Ox234)
#define PMFDTMC _LP(Ox236)

//#define RESERVED _P(0x0238 - 0x023C)

#define PTIM _P(0x0251)
#define DRRM _P(0x0252)
#define RDDM _P(0x0253)
#define PERM _P(0x0254)
#define PPSM _P(0x0255)
#define WOMM _P(0x0256)
//#define RESERVED _P(0x0257)
#define PTP _P(0x0258)

#define PTIP _P(0x0259)
#define DDRP _P(0x025A)
#define RDRP _P(0x025B)
#define PERP _P(0x025C)
#define PPSP _P(0x025D)
//#define RESERVED _P(0x025E)
//#define RESERVED _P(0X025F)
#define PTQ _P(0x0260)
#define PTIQ _P(0x0261)
#define DDRQ _P(0x0262)
#define RDRQ _P(0x0263)
#define PERQ _P(0x0264)
#define PPSQ _P(0x0265)
//#define RESERVED _P(0x0266)
//#define RESERVED _P(0X0267)
#define PTU _P(0x0268)
#define PTIU _P(0x0269)
#define DDRU _P(0x026A)
#define RDRU _P(0x026B)
#define PERU _P(0x026C)
#define PPSU _P(0x026D)
#define MODRR _P(0x026E)
//#define RESERVED _P(0X026F)

#define PTAD _LP(0x0270)
#define PTIAD _LP(0x0272)
#define DDRAD _LP(0x0274)
#define RDRAD _LP(0x0276)
#define PERAD _LP(0x0278)
#define PPSAD _LP(0x027A)
#define PIEAD _LP(0x027C)
#define PIFAD _LP(0x027E)
//#define RESERVED _P(0X0280 - 0X02FF)

//#define Unimplemented _P(0x0300 - 0x03FF)
#endif

Appendix A

Motorola S-records
NAME
srec - S-record file and record format

DESCRIPTION

An S-record file consists of a sequence of specially formatted ASCII character
strings. An S-record will be less than or equal to 78 bytes in length.

The order of S-records within a file is of no significance and no particular order
may be assumed.

The general format of an S-record follows:

+-------------------//------------------//-----------------------+
| type | count | address | data | checksum |
+-------------------//------------------//-----------------------+
type -- A char[2] field. These characters describe the type of record (S0, S1, S2,
S3, S5, S7, S8, or S9).

count -- A char[2] field. These characters when paired and interpreted as a
hexadecimal value, display the count of remaining character pairs in the record.

address -- A char[4,6, or 8] field. These characters grouped and interpreted as a
hexadecimal value, display the address at which the data field is to be loaded
into memory. The length of the field depends on the number of bytes necessary
to hold the address. A 2-byte address uses 4 characters, a 3-byte address uses
6 characters, and a 4-byte address uses 8 characters.

data -- A char [0-64] field. These characters when paired and interpreted as
hexadecimal values represent the memory loadable data or descriptive
information.

checksum -- A char[2] field. These characters when paired and interpreted as a
hexadecimal value display the least significant byte of the ones complement of
the sum of the byte values represented by the pairs of characters making up the
count, the address, and the data fields.

Each record is terminated with a line feed. If any additional or different record
terminator(s) or delay characters are needed during transmission to the target
system it is the responsibility of the transmitting program to provide them.

S0 Record. The type of record is 'S0' (0x5330). The address field is unused and
will be filled with zeros (0x0000). The header information within the data field is
divided into the following subfields.

mname is char[20] and is the module name.
ver is char[2] and is the version number.
rev is char[2] and is the revision number.
description is char[0-36] and is a text comment.
Each of the subfields is composed of ASCII bytes whose associated characters,
when paired, represent one byte hexadecimal values in the case of the version
and revision numbers, or represent the hexadecimal values of the ASCII
characters comprising the module name and description.

S1 Record. The type of record field is 'S1' (0x5331). The address field is
intrepreted as a 2-byte address. The data field is composed of memory loadable
data.

S2 Record. The type of record field is 'S2' (0x5332). The address field is
intrepreted as a 3-byte address. The data field is composed of memory loadable
data.

S3 Record. The type of record field is 'S3' (0x5333). The address field is
intrepreted as a 4-byte address. The data field is composed of memory loadable
data.

S5 Record. The type of record field is 'S5' (0x5335). The address field is
intrepreted as a 2-byte value and contains the count of S1, S2, and S3 records
previously transmitted. There is no data field.

S7 Record. The type of record field is 'S7' (0x5337). The address field contains
the starting execution address and is intrepreted as 4-byte address. There is no
data field.

S8 Record. The type of record field is 'S8' (0x5338). The address field contains
the starting execution address and is intrepreted as 3-byte address. There is no
data field.

S9 Record. The type of record field is 'S9' (0x5339). The address field contains
the starting execution address and is intrepreted as 2-byte address. There is no
data field.

EXAMPLE

Shown below is a typical S-record format file.
S00600004844521B
S1130000285F245F2212226A000424290008237C2A

S11300100002000800082629001853812341001813
S113002041E900084E42234300182342000824A952
S107003000144ED492
S5030004F8
S9030000FC

The file consists of one S0 record, four S1 records, one S5 record and an S9
record.

The S0 record is comprised as follows:

• S0 S-record type S0, indicating it is a header record.
• 06 Hexadecimal 06 (decimal 6), indicating that six character pairs (or

ASCII bytes) follow.
• 00 00 Four character 2-byte address field, zeroes in this example.
• 48 44 52 ASCII H, D, and R - "HDR".
• 1B The checksum.

The first S1 record is comprised as follows:

• S1 S-record type S1, indicating it is a data record to be loaded at a 2-byte
address.

• 13 Hexadecimal 13 (decimal 19), indicating that nineteen character pairs,
representing a 2 byte address, 16 bytes of binary data, and a 1 byte
checksum, follow.

• 00 00 Four character 2-byte address field; hexidecimal address 0x0000,
where the data which follows is to be loaded.

• 28 5F 24 5F 22 12 22 6A 00 04 24 29 00 08 23 7C Sixteen character pairs
representing the actual binary data.

• 2A The checksum.

The second and third S1 records each contain 0x13 (19) character pairs and are
ended with checksums of 13 and 52, respectively. The fourth S1 record contains
07 character pairs and has a checksum of 92.

The S5 record is comprised as follows:

• S5 S-record type S5, indicating it is a count record indicating the number
of S1 records

• 03 Hexadecimal 03 (decimal 3), indicating that three character pairs
follow.

• 00 04 Hexadecimal 0004 (decimal 4), indicating that there are four data
records previous to this record.

• F8 The checksum.

The S9 record is comprised as follows:

• S9 S-record type S9, indicating it is a termination record.
• 03 Hexadecimal 03 (decimal 3), indicating that three character pairs

follow.
• 00 00 The address field, hexadecimal 0 (decimal 0) indicating the starting

execution address.
• FC The checksum.

Instructor Notes

• There isn't any evidence that Motorola ever has made use of the header
information within the data field of the S0 record, as described above. This
must have been used by some third party vendors.

• This is the only place that a 78-byte limit on total record length or 64-byte
limit on data length is documented. These values shouldn't be trusted for
the general case.

• The count field can have values in the range of 0x3 (2 bytes of address +
1 byte checksum = 3, a not very useful record) to 0xff; this is the count of
remaining character pairs, including checksum.

• If you write code to convert S-Records, you should always assume that a
record can be as long as 514 (decimal) characters in length (255 * 2 =
510, plus 4 characters for the type and count fields), plus any terminating
character(s). That is, in establishing an input buffer in C, you would
declare it to be an array of 515 chars, thus leaving room for the
terminating null character.

