
1

1 INTRODUCTION

Congratulations!
 Now that you’ve got your hands on Adapt812MAX, you’re
well on your way to success with your project! You’ll find it is a
powerful and versatile tool for working with Motorola’s
68HC812A4 microcontroller. Your questions and comments are
always welcome. We provide friendly, knowledgeable technical
support by telephone, fax, and e-mail to all our customers. As well,
we have a comprehensive website with a Resources page (featuring
new information, software, and links to other useful sites on the
Internet), an Applications page (links to specific application ex-
amples, tutorials, and code), and a Tech Support page (latest ver-
sions of manuals and disks, troubleshooting hints, bugfixes, and a
sign-up link to our Internet-based customer discussion group). See
the back cover of this manual for how to contact Technological Arts.

Adapt812MAX Overview
 Adapt812MAX was designed as an evaluation and appli-
cation tool for the Motorola MC68HC812A4 microcontroller. It is
a fully functional, standalone implementation designed to run in
Expanded Wide Mode, to take full advantage of the 16-bit capa-
bility of the MCU. Unique among evaluation boards, its modular
design permits it to be easily plugged into any standard solderless
breadboard, using the supplied adapters. Developing your appli-
cation is easy! Simply wire up the desired application circuits in
your breadboard and download your code into memory, using the
convenient erase/load utility. The fast in-circuit re-programming
capability is ideally suited for the frequent code changes typical
during the product development phase. Once the initial design has
been developed, the application circuitry can be transferred to the
supplied prototyping card for a more permanent assembly, suitable
for mounting in an enclosure. If you need multiple copies of your
application, a printed circuit board can be designed to accomodate

REV 0

24

• CPU12 Reference Manual (CPU12RM/AD)
• 68HC812A4 Technical Summary (MC68HC812A4TS/D)
• CPU12 Reference Guide (CPU12RG/D)

Textbooks

• Software & Hardware Engineering: Motorola 68HC12
 Oxford Press, ISBN 0-19-511046-3

• Developing Embedded Software in C Using
ICC11/ICC12/Hiware
 www.ece.utexas.edu/~valvano/embed/toc1.htm

• Embedded Microcomputer Systems: Real Time Interfacing
 Brooks-Cole Publishers, ISBN 0-534-36642-2

• Design of Embedded Systems Using 68HC12/11 Microcon-
trollers
 Prentice Hall, ISBN 0-13-083208-1

• Single and Multiple-Chip Microcontroller Interfacing for the
Motorola 68HC12
 Academic Press, ISBN0-12-451830-3

2

the application circuitry. If you require more than 25 pieces,
contact Technological Arts for a quotation to lay out and manu-
facture your circuit board from your tested working schematic.

Product Configurations
 Adapt812MAX was designed to support various memory
configurations: Flash chips are of the AM29Fx00 variety (or
equivalent), and can be selected by CSP0 or CSP1, with a total of
2MB supported directly (using 29F800).
 SRAM chips are used in pairs (to provide 16-bit wide
RAM), and can be 128K chips (for 256K bytes), or 512K chips (for
1MB-- the maximum supported by 68HC812). Logic is provided
so that 8-bit accesses of the RAM are possible.
 An optional time-of-day clock/calendar chip (Epson
RTC-8593) is supported on the circuit board, with battery backup
provided for both the clock and SRAM. In addition, the ‘812A4
has on-chip memory consisting of 1K SRAM and 4K EEPROM. A
firmware utility (“MAXFlash”) has been loaded into the on-chip
EEPROM by Technological Arts, providing a convenient way for
you to erase and load programs into Flash via your PC serial port.
Communications
 An RS-232-compatible serial interface port (RX & TX
only) is included on Adapt812MAX, allowing communication
with a PC, or any other device which has an RS-232 serial port.
The logic-level RXD and TXD signals from the MCU are also
brought out to the 50-pin primary I/O connector (H1), for appli-
cations such as RS-485 or MIDI. A dedicated RS-485 serial port is
implemented using the second SCI on the 68HC812. This is useful
for networking industrial control applications.

How is Adapt812MAX different?
 Most evaluation and development systems available tend
to use up system resources with resident monitors or debuggers.
These are fine for learning in a classroom environment, but tend to

23

5.0 SOURCES

Internet Resources

• Technological Arts: www.technologicalarts.com
 e-mail addresses: sales@technologicalarts.com
 support@technologicalarts.com

Join techart-micros, our online discussion group to network with
other Adapt12 users and receive automatic notification of updates,
new product announcements, and special promotions. Visit the
Tech Support webpage for details.

• Motorola Freeware: www.mcu.motsps.com/freeweb/pub/

• Karl Lunt (SBASIC compiler): www.seanet.com/~karllunt

• Kevin Ross (BDM12 pod): www.nwlinkcom/~kevinro

• ImageCraft (ICC12 C compiler): www.imagecraft.com

• miniIDE (freeware HC12 Integrated Development Environment
for W95/NT platforms): www.mgtek.com

• course material & examples by Jon Valvano (University of Texas)
 www.ece.utexas.edu/~valvano/

Motorola Publications

Motorola Fax-on-Demand: (602) 244-6609 or 800-774-1848

Motorola Semiconductor Literature Distribution Center
P.O. Box 20912, Phoenix, AZ 85036 1-800-441-2447

3

be too expensive and bulky for embedding into a real application.
With the HC12’s powerful Background Debug Mode (BDM), a
monitor is not needed, since each MCU includes a BDM ROM
on-chip. Memory and registers can be examined and modified
even while the user’s code is running! (Note: external Flash
programming and erasing via BDM is not supported by all BDM
pods).
 Another drawback of typical evaluation boards is that the
prototyping area provided is often limited, and does not lend itself
to re-usability. By contrast, the Adapt12 families are designed to
be modular. All I/O lines and control signals are brought out to two
standard 50-pin interface connectors. With several different con-
nector options available, you can use the module in whatever way
best suits your needs. With the solderless breadboard adapter, you
can treat the module like a big chip, and plug it right into a couple
of breadboard strips. Forget about soldering or wire-wrapping--
get started developing your application right away. Your proto-
typing space is virtually unlimited, using solderless breadboards!
When you’ve got a design working and you’re ready to make it
permanent, just use the supplied prototyping card to build your
fully customized, compact application at low cost. Additional
prototyping cards and application-specific cards are avaialble.
 This modular prototyping approach has another advantage:
you can build up different applications on separate prototyping
cards, and then interchange them, as needed. In an educational
environment, the MCU board can be re-used by other students if
each student purchases his own prototyping card to build his project.

2 USING ADAPT812MAX WITH SOLDERLESS
BREADBOARDS

The standard Adapt812MAX Starter Package comes with two
50-pin adapters to allow you to plug the module into one or two
solderless breadboards (“protoboards”). These adapters may be

22

age monitoring and smooth power-source switching, protecting
RAM from corruption during power up and power down events.
One characteristic worth noting is the power-up time delay for the
Chip Enable signal. According to the DS1210 data sheet, this delay
can be as long as 120 ms. For this reason, make sure that your
firmware does not try to access RAM for at least 120 ms after
power comes on, or the results may be invalid.

4.6 Using a BDM Pod

 Background Debug Mode is a powerful feature of the
68HC12 family. Among other things, it allows you to monitor your
program as it executes, examine and modify memory, manipulate
register contents, and load s-records into on-chip memory. Mo-
torola includes a BDM ROM on every 68HC12 chip, and the in-
terface is implemented by a special single-wire bidirectional serial
interface protocol. Complete details can be found in section 16 of
Motorola’s 68HC812A4 Technical Summary.
 A BDM pod provides an interface between the single-wire
protocol and an RS232 serial port or a standard PC parallel port.
There are many choices of BDM pods on the market. High-end
models with powerful development features include Noral’s
FlexBDM and Motorola’s SDI cable. Moderately-priced units are
made by P&E Micro and Axiom Manufacturing. Low-cost units
include Motorola’s EVB912 or Technological Arts’ Adapt912
jumpered for “POD” mode, or Kevin Ross’s BDM12 pod (for
Win98/NT only). A new BDM pod from Technological Arts called
MicroBDM12 is the lowest-cost unit on the market to date, and
incorporates all the features of Motorola’s DBug12 debug/monitor
program.
 Some of the more advanced BDM pods control the MCU
operation by means of flying leads to connect to ECLK, MODA
and MODB. These points can be accessed on Adapt812MAX via
extra pins on the BDM connector and the MODA JB1 connector
(remove the shorting plug). See schematic for details.

4

used on one or both I/O connectors (H1 or H2). Use care not to
short any pins on H2, since many of the signals present are data and
address lines used by the expanded memory on board.
CAUTION!
Never insert or remove your module from a “live” breadboard.
Make sure the power is OFF !

1) Any breadboard will do; however, you will find that the
kind made with a softer, more pliable plastic (such as nylon) will
be easier to use and more durable.

2) When plugging the module into your breadboard, you may
find it easier to put the adapters in place first. Then plug the
module into the adapters when you have finished wiring your I/O
circuits. To remove the module, hold the adapter down by the
ends, and gently pry up the module.

3) Plug Adapt812MAX into the middle area of your bread-
board strip to allow maximum access on each end to all the signals.
If possible, place an additional breadboard section in parallel on
each side for easier wiring of your circuits. (HELPFUL HINT: If
you are using the Analog inputs, make sure to wire your analog
circuits as close to these pins as possible, to keep noise levels down.)

4) Choose a convention for wiring your power distribution
buses. A logical approach is to make the inside bus logic 5V, and
the outside buses GROUND. Never supply external power via J1
if you are supplying 5VDC via the 50-pin connector. However,
always connect the breadboard GROUND to the module
GROUND.

5) If you are using voltages other than 5V, make sure to keep
these well away from the I/O pins and tie-strips, to avoid accidental
shorts which may damage the module.

21

should now be running. Try the Flash loading procedure using
mx1demo1.s19 (mx1demo5.s19 if you have 512K Flash), located
on your Adapt12 Utilities disk. Look at the source code of
mx1demo.asm to see how the file is set up to create a
banked-Flash-loadable s-record. To download a new s-record to
Flash, simply switch SW3 back to SGL, press reset, and make the
appopriate selection from the Flash utility menu. Note that you
must perform an Erase before sending a new file. You can use the
v command to verify the contents of Flash against an s-record file.
Just use the ASCII download function again to send the s-record
file to be verified against. Failure to program or verify usually
indicates that your s-record file contains references to invalid ad
dresses. If it does match, you will get a confirmation message,
and the menu will be re-displayed.
 The Flash programming function will handle s-records
generated for either banked or non-banked memory schemes, as
well as recognizing and programming non-Flash addresses. An
s-record file destined to be used in non-banked mode will include
s-records above the Program window (ie. $c000 and higher). These
are the types of s-records generated by ICC12 and SBASIC. Before
loading such a file into Flash, select Non-banked Mode (n from the
menu). When in Non-banked Mode, the algorithm automatically
sets the PPAGE value to the second-last 16K page when pro-
gramming target addresses in the range $8000–$bfff. When it
encounters addresses in the range $c000–$ffff, it sets PPAGE to the
lastpage of Flash, and subtracts $4000 from the address, to generate
a destination address in the Program Window. When the board is
reset in Expanded Wide mode, the EEPROM-resident MAXFlash
utility moves out of the way, down to $1000, and the reset vector
will be fetched from the topmost block of Flash.

4.5 Notes on the Battery Backup Circuit

 The battery backup circuit is based on the Dallas Semi-
conductor DS1210 “NonVolatizer” chip. This chip provides volt-

5

3 TUTORIAL

 Note that this manual is not meant to provide an exhaus-
tive study of the 68HC12 family of microcontrollers, but rather to
help you get started using the Adapt812MAX microcontroller
board as a learning and application development tool for
68HC812A4, whether you’re a beginner or an expert. If you are a
beginner, you will benefit from additional material listed in the
Reference section of this manual, and links provided on the Re-
source page of our website (see back cover for URL). You will
find Motorola’s 68HC11 Reference Manual an invaluable guide to

Figure 3.1 - Demo Menu shown in ICC12 Terminal Window

20

by initializing the appropriate memory expansion and mode reg-
isters, and it is ready to load code into Flash. By careful placement
of ORG and FCB directives throughout the assembly source code
(to force the appropriate value into PPAGE before loading a new
page of code), the s-record loader will automatically change
PPAGE “on-the-fly”, during s-record downloading. This supports
programming of code into any combination of program pages in
Flash. In fact, since the topmost page also appears in the space
$c000–$ffff, it is possible to program the vectors via the page
window– which is indeed necessary, since the on-chip EEPROM
is active in the vector space from $f000–$ffff, preventing direct
access to Flash via these addresses. There are a couple of tricks to
implementing this scheme, however. In order to program the last
page of Flash with the vectors and startup code, you have to use the
PPAGE windowed system, in which the address range is $8000–
$bfff. Therefore you’ll set PPAGE=$1F (for a 512K Flash) and
ORG the vector table at $bfc0. Also, you need all the vectors to
point to locations that are not affected by the program paging
system. This leaves a 16K block of Flash from $c000–$ffff where
all Interrupt Service Routines (ISRs) and startup code should be
placed. Once the startup code switches on paging, subroutines in
the program page window can be accessed using the CALL and
RTC features of the HC12 instruction set. Listing 1 is an example
of how a typical sourcecode file would be organized.

4.42 The MAXFlash Utility
 To use MAXFlash, set your terminal program’s baudrate
to 9600, set Adapt812MAX switches to RUN and SGL, move
MODB (JB1 jumper) to “0”and press RESET. You’ll see the
MX1Flash utility menu displayed in your terminal window. First
type e to erase the Flash memory. Then type p to program an
s-record into Flash. Use the ASCII file transfer function of your
terminal program to send the s-record file to the board. When
finished, switch to EXP and press reset. The program in Flash

6

the workings of the 68HC12, since most of the subsystems of the
68HC12 work the same way as their 68HC11 counterparts.
 If you have internet access, make sure to subscribe to our
free techart-micros discussion group (details on Tech Support
webpage). This free service allows you to network with other
users, and receive important notices regarding new products, bug
fixes, and software upgrades.

CAUTION!
Never insert or remove your module from a “live” breadboard.
Make sure the power is OFF !

3.1 Getting Started

 Adapt812MAX has a demonstration program already
programmed into Flash when you receive it. This is a useful pro-
gram for testing your communications setup and monitoring &
controlling the various I/O lines of the micro. It can also form the
basis of your own application code.
 You can power the module in one of two ways:
 1) supply power via the external power connector; just
connect a DC voltage of 8 Volts or more (maximum 15V) to the
external power connector J1. Red is positive, and black is negative
(ground). CAUTION! Make sure you have the polarity correct!
 2) or, supply regulated 5VDC via the appropriate pins on
the 50-pin connector (H1). See Appendix A for the module pinout
diagram. CAUTION! Double-check your connections before
applying power! (Note: if you are powering the board via H1, and
you’re concerned about power consumption, you may wish to
isolate the voltage regulator U3 by removing link W14, because it
will add several mA to the total board’s current draw.)
 To use the demo program, make sure the black switch
SW2 is in the RUN position, set switch SW3 to EXP, and move the
MODB jumper (JB1) to “1” (for wide mode). Connect the sup-
plied serial cable between Adapt812MAX and a serial port on your

19

value of PPAGE can be implemented by means of the ORG and
FCB directives of the assembler. Using this scheme, one can
preface a block of code or subroutines with a directive which sets
PPAGE to the desired page.
 The MAXFlash Utility, residing in on-chip EEPROM, al-
lows user interaction with a terminal program to perform such
necessary operations as Erase Flash, Program an s-record file, and
Verify the contents of Flash. In order to execute the utility out of
reset, you reset the chip in single-chip mode, forcing the EEPROM
into the vector space. The utility then switches to expanded mode

 LISTING 1

org $c000
;up to 12K of code goes here (up to $efff)
; This would include:
;1) startup code (where reset vector points; turn on memory expansion and
paging)
;2) main code (and some subroutines, if space allows)
;3) interrupt service routines

;paged program memory
 org PPAGE
 fcb 0
 org $8000

;up to 16K of subroutines for page 0 go here (up to $bfff)
.....
 org PPAGE
 fcb 1
 org $8000

;up to 16K of subroutines for page 1 go here (up to $bfff)
.....
 org PPAGE
 fcb 2
 org $8000

;up to 16K of subroutines for page 2 go here (up to $bfff)
.....
etc.
 org PPAGE
 fcb $1f ;for a 512KB Flash chip
 org $bfc0

;vector table starts here
;IMPORTANT:
;all vector entries must point to addresses between $c000 and $ffff
;(ie. the startup code and all ISRs must be located in this 16K block)
 .
 .
;end

7

computer. (With some PCs, you will need a 9-pin to 25-pin
adapter.) Run any terminal program on your PC. Suggested DOS
programs are ProCommPlus, Kermit, or Mirror. On a Windows
machine, you can use Windows Terminal (Win3.1), Hyperterminal
(W95/98), ICC12 for Windows, or miniIDE. (By the way, we
strongly recommend you download the free MiniIDE program, as
it gives you an excellent all-in-one assembler, editor, and terminal
program for W95/98/NT. Visit the Resources page of our website
for a link).
 In your terminal program, set the baud rate to 9600, parity
to NONE, # DATA BITS = 8, and #STOP BITS = 1. Press the
Adapt812MAX RESET button (SW1), and red LED D1 will blink
four times, indicating the demo programming is running. Press the
ENTER key on your keyboard. A menu of commands will appear
on your computer screen, followed by a command prompt “?”
symbol. Each command is activated by a single keystroke. Typing
a command not listed will cause the menu to be re-displayed.
Figure 3.1 shows an example of the demo program menu displayed
in ImageCraft’s ICC12 IDE terminal window.
 In general, typing the letter name of an I/O port in the demo
program returns the state of that port. Try putting switches on
some of these input port lines. Connect one side of the switch to
the port pin and the other side to ground. Note that external pullup
resistors are not required, since most ports have internal pull-up
resistors which are enabled out of reset (refer to the 68HC812A4
Technical Summary for details). In the demo program, PT6 is used
as a tone output for a speaker. It is also connected to red LED D1,
to provide a visual output. You can drive a small piezo speaker
directly by hooking one end to PT6 through a 330-Ohm resistor,
and the other end to ground. When you press RESET, or type “L”
when the demo program is running, you will hear a series of tones
from the speaker (the LED will also blink a few times).
 In the demo program, PORTJ is set up as all outputs.
Typing a digit between 0 and 7 causes the output state of the

18

RAM will consist of $3f separate 4K datapages, and a 1M RAM
will be made up of $ff datapages. The 512K Flash will consist of
$1f separate 16K program pages. The Extra Page space shown in
Figure 4.1, corresponds to CS0-CS3, and is not implemented in
Adapt812MAX. However, the user can implement it, if desired, by
decoding the signals present on connector H2.

4.41 External Memory Programming Issues
 When the MCU comes out of reset in Normal Expanded
Wide mode, CSP0* is active, but program paging and A16 are not
active. All address lines above A15 are pulled high, so the MCU
will fetch the reset vector from the last two Flash physical address
locations. Since paging is not yet on, CSP0* covers 32K of system
memory (from $8000–$ffff), which is the last 32K (contiguous)
block of Flash. Startup code should be put in the upper 16K half,
so that when program paging is turned on, the re-definition of
addresses will not disrupt program execution. (Program execution
could be disrupted because, when program paging is activated, the
lower 16K half [of the topmost 32K block of Flash] suddenly
“jumps” to $8000–$bfff, accessible only when PPAGE=6 for a
128K Flash, or $1E, for a 512K Flash.) The startup code to be
placed in the topmost 16K page would typically be the memory
expansion register initializations. After that, the PPAGE register
could be initialized to the desired value, and a jump to the begin-
ning of the user program could be performed. For example, if the
user program were located in the first physical page of Flash,
starting at $8000, the last few lines of startup code would set
PPAGE=0, and jump to $8000.
 A second issue is how to deal with paging and the gen-
eration of s-records in the assembler. Since PPAGE is just a
memory location, it can be written to (as many times as nec
essary) by means of an s1 record during the course of downloading.
Of course, the assembler will have to generate the s-records se-
quentially during assembly. The necessary s1 record to alter the

8

corresponding PORTJ line to be toggled (eg. typing 3 causes PJ3 to
go high if it was low previously, or a low if it was high previously).
This allows you to activate LEDs (when driving LEDs directly
from an output port, limit the current to a maximum of 10mA with
330-Ohm current limiting resistors on each LED); or drive relays,
solenoids, or motors (with appropriate driver circuits). Typing J
forces all PORTJ output lines low. Typing R causes the values of
all 8 analog-to-digital converter (AN0-AN7) channels of to be
continuously updated on the screen (near Real-time updates) The
display will continue to be updated until a key is pressed. Analog
channels (AN0-AN7) can read voltages between 0 and 5 Volts.
Try putting a 10K-Ohm (or higher) pot across the VRL and VRH
pins (pins 30 and 31), and connect the wiper to an AN input
through a 1K-Ohm current limiting resistor; then change the pot
setting, monitoring the AN values on the screen. Unused AN
channels should be grounded to VRL through a minimum 1K-Ohm
resistor. These inputs are not internally protected from electro-
static discharge (ESD) as the other input port lines are. (HELPFUL
HINT: Grounding multiple adjacent analog inputs is easy by
plugging a bussed resistor SIP in your breadboard and jumpering
the SIP common pin to VRL.)

3.2 Writing Your First Program

 If you are already experienced with the 68HC11 family of
microcontrollers, writing 68HC12 programs will not present a
challenge. In fact, you can use your existing 68HC11 assembly
code and re-assemble it for the 68HC12. There are a couple of
things to keep in mind when doing this. The first is assembler
syntax. You may need to edit your source file to conform to the
syntax and directives requirements of the HC12 assembler you are
using. Keep in mind, too, that the register block default location is
$0000 and the 1K internal RAM is at $0800. This means you
would initialize the Stack Pointer to $0c00. Also, the HC12 bus

17

Refer to your 68HC812A4 Technical Summary document for de-
tails on the paging architecture and memory expansion modes of
the MCU. In this configuration, RAM is viewed by the MCU as a
bank of 4K data pages, with the active page being selected by the
MCU’s DPAGE register. Flash memory is viewed by the MCU as
a bank of 16K program pages, with the active page being selected
by the MCU’s PPAGE register. The example shown in Figure 4.1
is taken from Motorola’s Technical Summary, and is for 64K
RAM (data space) and 128K Flash (program space). A 512K

9

speed is a lot higher than the HC11. This will mean changing some
initialization values for control registers and revising delay con-
stants if you are doing software timing loops. Of course, there is an
expanded inteerupt vector table, handling the additional hardware
functions of the HC12. As with the HC11, you will have to define
at least the Reset vector in every program you write.
 To explore the new instructions and addressing modes of
the HC12, you should refer to the Motorola CPU12 Reference
Manual, available from the Motorola Literature Center or in Ac-
robat format from Motorola’s website.
 As mentioned in the previous section, a demo program
resides in your module’s Flash memory when you receive it. This
demo program is written in the freeware AS12 assembler syntax,
and is intended to provide you with an easy way to verify your
hardware setup (ie. power supply, serial connection, PC software,
etc.). It also provides you with an excellent starting point for
developing your own program. Rather than starting from scratch,
you can make a copy of the demo source file and remove and add
features, to transform it into what you need.
 Many people approach programming by spending hours or
even days writing a program from scratch, then assembling it and
downloading it. Then they cross their fingers and reset the board,
praying everything will work. About 99% of the time, their hopes
are dashed, as the board does something completely different than
they expected, or worse– it appears to do nothing! At that point,
they either give up, or purchase expensive diagnostic equipment,
such as logic analyzers and in-circuit emulators to begin the long
hard road of diagnosing and correcting their software and/or
hardware mistakes.
 A much more sensible– and rewarding– approach is to
start with something that works, and then add new features in-
crementally. The modular design of Adapt812MAX gives you that
starting point– hardware that works, and software that works.
Now, if you build on that incrementally, each diagnostic step is

16

finished, switch SW3 to EXP, jumper JB1 to “1”, and press RE-
SET. By selecting non-banked mode, you have told MAXFlash to
automatically calculate the correct address and page offset to place
your code in the last two blocks of physical Flash memory. When
you reset in expanded mode, your code will be located in the 32K
block of Flash the ‘HC812 accesses from 0x8000 to 0xffff.

4.3 Using SBASIC

As is the case with ICC12, SBASIC does not directly support
banked memory on the 68HC12, so you will only have 32K Flash
available for your code. The following are suggested compiler
options for use with Adapt812MAX. If myprog.bas is your
SBASIC program filename, and myprog is the name you want the
target assembly language file to be called, then type:

sbasic myprog /c8000 /v0800 /s0c00 /m6812 >myprog

After successful compilation, run as12 to create an s-record file, as
follows:
 as12 myprog

Then open a terminal window set for 9600 baud (no character
delay). Reset the board in SGL mode, and the MAXFlash Utility
menu will appear. Type n to set non-banked mode. Then type e to
erase Flash, and choose p to program Flash. Select the terminal’s
ASCII transfer function, and download your .s19 file. When fin-
ished, switch SW3 to EXP, jumper JB1 to “1”, and press RESET.

 as12 myprog

4.4 External Memory

As mentioned previously, external memory on Adapt812MAX was
designed to be used with the 68HC812A4’s Data and Program
memory page window system, in Normal Expanded Wide Mode.

10

small and manageable. And it will probably end up taking a lot less
time, and costing a lot less money.
 A useful debugging tool for program development is the
serial communications interface (SCI). The SCI gives you a win-
dow on what’s going on inside the microcontroller. Simple diag-
nostic messages, placed at strategic points in your evolving pro-
gram, will be invaluable in debugging your software and hardware.
 With the HC12, however, Motorola has added an even
more powerful feature for debugging and development– the Back-
ground Debug Mode (BDM). This feature allows you to examine
and modify locations and registers in your system while your
program is running or suspended. It is implemented with a
single-wire serial protocol, and requires a BDM interface pod to
use with a serial port on your computer. Motorola makes a full-
featured SDI pod, costing several hundred dollars, which is beyond
the budget of most hobbyists, students, and many engineers For-
tunately, there are some low-cost alternatives. MicroBDM12 or
Adapt912 from Technological Arts, and Motorola’s 912EVB
Evaluation Board both have a debugger/monitor program (D-
Bug12) on-chip, which allow them to be run as a BDM interface,
in POD mode. Another possibility is the BDM12, from Kevin
Ross, which includes Windows95/NT-based software for easy
debugging. All of these pods may be used for downloading s-
records to EEPROM, and all are supported by ImageCraft’s ICC12
68HC12 C Cross-complier for Windows. See Section 5 for contact
information.

3.3 Downloading Your Code to Adapt812MAX

 Once you have assembled your code with no errors, you
can download the resulting s-record file (filename.s19) to Flash
using MAXFlash, the on-chip firmware utility provided. Connect
the supplied serial cable between connector J4 on your module and
an available serial port of your PC (or Mac, Amiga, workstation,

15

and will no longer be in the vector space of the HC12. Instead,
external Flash will be there, and the MCU will attempt to run
whatever is there.
User EEPROM. You may wish to use some EEPROM for storing
calibration information or a serial number. You could erase EE-
PROM and use it for your application; however, you would lose
both the bootloader and MAXFlash utilities, and have to re-load
them when you need to make a code change in Flash. If 254 bytes
is enough, use the EEPROM from $1e00 - $1efd. This block is not
used by the utilities, and has been reserved for the user’s applica-
tions.

4.2 Using ICC12 for Windows

 ICC12 does not directly support banked memory on the
68HC12, so you will only have 32K Flash available for your code
(ie. you will be running in Non-Banked Mode). Before compiling,
set up the linker sections with 0x0800 for data (RAM), 0x8000 for
text (code), and stack at 0x0c00. This will allocate the on-chip 1K
RAM for both variables and stack, and the external RAM will not
be used. (Note: to use external RAM, you would need to add code
to your startup file to set the CSDE bit of the CSCTL0 register.
Then you could locate the DATA section at 0x7000, for example.
If you try to allocate the stack to external RAM, however, watch
out! ICC12 executes a JSR instruction to run your startup code.
Since the external RAM is not yet enabled, the RAM to implement
your stack has not yet been enabled, so your code will never return
from the startup routine.) After ‘compling to executable’, down-
load the resulting s-record file using the terminal window. Open
the terminal window and set communication options for 9600 baud
and no character delay. Reset the board in SGL mode, and the
MAXFlash menu will appear. Type n to set non-banked mode.
Then type e to erase Flash, and choose p to program Flash. Select
the terminal window’s ASCII download option, choose the .s19
file you wish to download and click OK. When downloading has

11

etc.). Use any terminal program, set it for the chosen serial port
and 9600 baud.
 Power up or reset your module with BOOT/RUN set to
RUN, the MODB jumper (JB1) at “0”, and switch SW3 set to SGL.
You should see the MAXFlash command menu in your terminal
window. If your program does not use banked mode, select N.
(For more on banked versus non-banked memory, see section 3.4.)
To load your s-record file into Flash, first select E to erase the
Flash. The red LED D1 will come on while the Flash is being
erased. When it is finished, select P and use your terminal pro-
gram’s Upload or Send File function to send your s-record file.
When it has finished, select Expanded Wide mode (MODA-
=MODB=1) by sliding SW3 to EXP and moving JB1 jumper to
“1”. If you wrote your code correctly, it should start running when
you reset the board. Always leave SW2 in the RUN position,
otherwise MAXFlash may get inadvertently erased from the on-
chip EEPROM. (If you do erase it accidentally, however, it is easy
to reload. See Section 4.1 for details.)

3.4 Expanded Mode Operation

 Adapt812MAX was created by merging two other Tech
nological Arts products (Adapt812 Microcontroller card and
Adapt812-MX2 Wide-Mode Memory Expansion card) into a sin-
gle compact board. As a result, references to memory expansion in
documentation and filenames will sometimes be made to MX2.
Adapt812MAX is designed to run in Expanded Wide Mode (16-bit
data bus). For this reason, MODB is jumpered high on JB1
whenever a program in external Flash is to execute. Switch SW3
allows MODA to be switched between logic 0 (single-chip mode)
and logic 1 (expanded mode). Typically, you will set the switch to
SGL and JB1 to 0 in order to run MAXFlash, then erase the Flash
and, finally, load an s-record file into Flash. Then you’ll switch to
EXP and move the jumper to “1” before resetting the board to have
the MCU execute the code you loaded into Flash.

14

4.11 Re-loading the Flash Utility
 On Adapt812MAX, a “user” program has already been
loaded into EEPROM. It is the MAXFlash utility mentioned pre-
viously, which allows you to erase Flash and load s-records into it,
among other things. If you have inadvertently erased MAXFlash
from EEPROM, you can easily re-load it by following one of the
procedures described below.
 From DOS, use one of the batchfiles included on the
Starter Package disk. Use p8s1.bat for COM1, or p8s2.bat when
using COM2. (If you are using another COM port, you will have
to edit the batchfile to reflect this.) For example, to download
maxflash.s19 to Adapt812MAX EEPROM via COM2, at the DOS
prompt, you would enter:
 p8s2 <path>maxflash
where <path> is the directory path to where maxflash.s19 is lo-
cated (if it is not in the same directory as p8s2.bat). Then follow
the on-screen instructions. If you experience problems with the
DOS batchfile on a Windows95 machine, you may need to edit the
batchfile to add “\dev\” to each occurence of the com port path (eg.
copy %1.s19 \dev\com2).
 Instead of using the DOS batchfile described above, you
could use any terminal program to perform an ASCII transfer of
maxflash.s19 to the board via the serial port. Just set up the ter-
minal program for the appropriate COM port and a baud rate of
1200. Switch to BOOT, press RESET, and send the file. When
you are done, change the terminal to 9600 baud, switch the board
back to RUN mode, and press RESET again. The Flash Utility
menu will be displayed.
 Note that, when using the EEPROM bootloader, as de-
scribed in this section, you should always keep the chip in
single-chip mode (ie. switch SW3 set to SGL and JB1 set to “0”).
If you reset or power-up with the SW3 at EXP, the 4K on-chip
EEPROM will move to its default location of $1000 instead of
$f000 (refer to Motorola’s 812A4 Technical Summary for details),

12

 There are a few points to keep in mind when writing code
for an expanded mode system. The 68HC812A4 provides several
internal registers which control and define the various possible
configurations of expanded memory. The simplest code can ignore
these registers, and consider the memory map to be limited to 64K.
This will be referred to as Non-Banked Mode. In this case, 32K of
the external RAM will be accessible from $0000 - $7fff (when
enabled via CSCTL0 and CSTL1 registers), and 32K of the ex-
ternal Flash will be available from $8000 - $ffff (since CSP0 is
enabled by default). The exceptions are those internal
68HC812A4 resources which appear in these areas– they have
priority over external memory. Note also that, in non-banked
mode, the physical address actually accessed in Flash and external
RAM is the topmost 32K block, since the default logic level on
address lines above A15 is high.
 To take full advantage of the memory capacity available on
Adapt812MAX, however, some of the MCU’s registers must be
initialized at the beginning of your code. For recommended reg-
ister values, have a look at the demo program source code, found
in the adapt12/mx1 subdirectory of your Starter Package disk. The
relevant file is mx1demo5.asm. While it was originally written for
boards with Narrow Expanded mode memory configurations (such
as Adapt812MX1 and Adapt812DX), this demo program will
work without modification in the Wide Expanded mode
Adapt812MAX board. It just so happens that this demo program
is small and fits into a single page of Flash; however, a larger
program could easily have subroutines located in other banks of
Flash. The only change necessary would be to use the CALL
instruction instead of JSR, specify the page number where the
subroutine is located, and change the RTS instruction to RTC
(return from call) at the end of the subroutine. For further details
on using expanded modes, refer to sections 6.3, 8.4, and 8.5 of the
Motorola 68HC812A4 Technical Summary.

13

4 REFERENCE
4.1 How On-chip EEPROM Programming Works

 Adapt812MAX uses on-chip 4K EEPROM for two purposes.
A small (256-byte) bootloader has been installed in the 68HC812A4
EEPROM by Technological Arts. It can be used to load any s-record
file into the rest of EEPROM, via the RS232 serial port, at 1200 baud.
To use this function, reset the board with SW2 at BOOT, SW3 at SGL,
and JB1 jumpered to “0”. Now when you send an s-record file at 1200
baud, the bootloader will erase all but the protected block of EEPROM,
and then program each byte of the s-record file into EEPROM. Red
LED D1 will flash once for each s-record loaded.
How it works: This bootloader program runs whenever the chip is
powered up or reset in single-chip mode, and looks at the state of PC6
(set via SW2) to decide whether to run a user program in EEPROM or
to initiate downloading (BOOT) mode. If the pin is pulled low, the
program loads an s-record file via the serial port, and “burns” it into
EEPROM. If the pin is open (pulled high by the internal pullup re-
sistor), control passes to the user program. This event is transparent to
the user. The only limitation is that EEPROM Block3 ($fdfe to $feff)
is not available to the user. During downloading, the user reset vector
is automatically intercepted and stored in a pseudo-reset-vector loca-
tion ($fdfe + $fdff) established by the bootloader. It is here that the
bootloader looks when the chip is reset in RUN mode, passing control
to the user’s program based on this vector. If the vector has not yet
been initialized (ie. contains $ffff), the bootloader waits in an infinite
loop, flashing red LED D1 to indicate an error condition.
 It is virtually impossible to accidently erase the bootloader
from the EEPROM, unless your program implements code to erase or
program on-chip EEPROM, and it clears the Block Protect bit for the
upper “boot block”. If for some reason you do erase the bootloader,
you will need to use a BDM pod to re-load it. However, if you have
only erased the MAXFlash utility (much more easily done), the pro-
cedure for restoring it is quite simple.

