

D-BugS08 v1.x.x Reference Guide Page 1 Freescale Semiconductor

February 15, 2007
Copyright 2007 Freescale Semiconductor

Reference Guide
For

D–BugS08 Version 1.x.x

A Debug Monitor
For

The MC9S08 Family of Microcontrollers
That Runs On The

MC9S12Dx256, MC9S12A256, MC9S12Dx128,
MC9S12H256 & MC9S12A128

Microcontrollers

Written By

Gordon Doughman
Field Applications Engineer

Software Specialist

1.0 Introduction

D–BugS08 is a simple but powerful command line debugger for the MC9S08 family of 8-bit
microcontrollers. Unlike D-Bug12, which operates as both a ROM resident and BDM POD
debugger, D–BugS08 runs on an MC9S12 family device and only operates in POD mode. Like
D-Bug12, D-BugS08 has the capability to erase and program target Flash memory, examine and
change RAM and I/O register contents and hot connect to a running target without disturbing the
state of the target MCU.

2.0 Hardware Requirements

D-BugS08 was designed to run on an MC9S12 family device containing at least 128K of Flash
program memory, 4K of RAM, 1K of EEPROM and a single SCI port with RS-232 level
translator. Hardware meeting these requirements would include Freescale Semiconductor’s
MC9S12DP256 EVB and the Serial BDM Programmer. Other evaluation boards from various
manufacturers may also meet these requirements.

In addition to these hardware requirements, it may be necessary for the POD hardware to provide
voltage level translators on the Reset and BKGD pins of the BDM target (OUT) connector
depending on the operating voltage range of the POD and target MCU. For example, the
MC9S12DP256 used on the MC9S12DP256 EVB has an operating voltage range of 5 volts
±10%. If the MC9S12DP256 EVB were used as the POD with a target system containing an

D-BugS08 v1.x.x Reference Guide Page 2 Freescale Semiconductor

February 15, 2007
Copyright 2007 Freescale Semiconductor

MC9S08 device operating outside that range, voltage level translators would be required to
ensure proper communication and prevent damage to the target S08 device. Note that the
Freescale Serial BDM Programmer hardware version 2, revision 2 contains level translator
circuitry on the Target BDM connector that will automatically track the target VDD levels as long
as target VDD is supplied to pin 6 of the target’s BDM connector.

D-BugS08 v1.x.x Reference Guide Page 3 Freescale Semiconductor

February 15, 2007
Copyright 2007 Freescale Semiconductor

For hardware not containing voltage level translators, the Maxim/Dallas MAX3373E
bidirectional level translators may be added to existing hardware as shown in Figure 2-1.

Figure 2-1, Bidirectional Level Shifters

In addition, D-BugS08 requires a bootloader that supports a secondary interrupt/reset vector
table that begins at $EFFF and grows downward (i.e. the secondary reset vector resides at $EFFE
and $EFFF). A 4K bootloader meeting these requirements is included with the D-BugS08
firmware distribution. This bootloader is suitable for use on the MC9S12DP256 EVB.

D-BugS08 v1.x.x Reference Guide Page 4 Freescale Semiconductor

February 15, 2007
Copyright 2007 Freescale Semiconductor

3.0 Terminal Communications Setup

D-BugS08 requires a host terminal program that supports XOn/XOff software handshaking for
proper operation. Many popular terminal emulation programs for the Windows™ operating
system meet this requirement. However, because of extremely slow text file transfer rates, the
Hyperterminal terminal emulation program supplied with Windows™ is NOT recommended.
Instead, a free terminal emulator program, named TeraTerm, is recommended for use with D–
BugS08. TeraTerm can be downloaded from the TeraTerm home page at:
http://hp.vector.co.jp/authors/VA002416/teraterm.html.

Baud rate changes made using the BAUD command are stored in the programmer’s nonvolatile
memory making the entered baud rate the new default communication rate. If communication
cannot be established with the programmer and random characters are displayed on the terminal
screen, it is possible that the baud rate was changed to something other than the current settings
of the terminal program.

 The factory configured default communications parameters used by D-BugS08 is 9600 baud,
eight data bits, one stop bit, XOn/XOff handshaking and no parity. If attempting communications
at various baud rates does not result in the display of the programmer’s prompt, the
programmer’s on-chip EEPROM should be erased to reconfigure the baud rate to the factory
default of 9600. This can be accomplished by the invoking the Serial bootloader as described in
Section 4.0, “Serial Bootloader” and selecting the Erase EEPROM command as described in
Section 4.4, “Erasing the On-chip EEPROM”.

3.1 Configuring TeraTerm

The TeraTerm terminal emulation program is recommended for use with D-BugS08. For those
not familiar with TeraTerm, this section describes the setup procedure necessary to use
TeraTerm with the programmer. After downloading and installing the TeraTerm terminal
emulator program, locate the TeraTerm program and double click on the icon to start the
program.

When presented with the “TeraTerm: New connection” dialog box, select the Serial connection,
choose the appropriate Port from the pop up menu and click the ‘OK’ button. Before proceeding,
the serial port must be configured by selecting “Serial Port…” from the “Setup” menu. The Port
pop up menu should be configured with the serial port chosen when the application was initially
launched. The Baud rate pop up menu should be set to the baud rate last set by the BAUD
command. If the programmer has not been used before, set the baud rate to the factory default of
9600. Make sure that the Data pop up is set to’ 8 bit’, Parity to ‘none’, Stop to ‘1 bit’ and Flow
control to ‘Xon/Xoff’. Click ‘OK’ to accept the settings.

Pressing the SYSTEM RESET button on the programmer should display the programmer’s sign-
on messages and prompt. If nothing appears on the screen, check the connection between the
computer and programmer to ensure that the programmer is connected to the proper serial port. If
random characters appear on the screen, it is most likely that an incorrect baud rate was selected.

D-BugS08 v1.x.x Reference Guide Page 5 Freescale Semiconductor

February 15, 2007
Copyright 2007 Freescale Semiconductor

4.0 BDM Target Connection

D-BugS08 communicates with the developer’s MC9S08 target system through the Single Wire
Background Debug interface. This arrangement, as shown in Figure 4-1, allows access to a
developer’s target system in a nonintrusive manner. All of the target MCU’s resources are
available to the developer, providing a noninvasive development environment for the target
system.

Figure 4-1, BDM Target Connection

On power-up or reset D–BugS08 attempts to establish communications with a target system.
Initially, communications with the target is attempted without resetting the target system. This
feature allows D–BugS08 to be ‘hot connected’ to a running system without disturbing the target
microcontroller. Because the MC9S08 BDM interface has the capability to send a timing
reference pulse to D–BugS08, it is never necessary for the developer to specify the target
operating frequency. D-BugS08 will automatically measure the timing reference pulse and
configure its BDM communications drivers accordingly.

If the hardware running D-BugS08 is powered up without being connected to a target system, the
message shown in Figure 4-2 is displayed.

D-BugS08 v1.x.x Reference Guide Page 6 Freescale Semiconductor

February 15, 2007
Copyright 2007 Freescale Semiconductor

Figure 4-2, Failed Target Communications Prompt

Entering option ‘1’, causes D-BugS08 to issue the BDM SYNC command which requests the
target MCU to issue a timed reference pulse on the BDM pin allowing D-BugS08 to determine
the target’s operating frequency. If a target MCU is properly connected and has power applied,
D-BugS08 should display either the ‘S>’ or ‘R>’ prompt. When the target system is in active
background mode (not running a user program), a two character prompt of ‘S>’ is displayed. The
‘S’ in the prompt indicates that the target is Stopped and not running a user program. When the
target system is running a user program, a two character prompt of ‘R>’ is displayed. The ‘R’
indicates that the target is Running a user program.

If communication cannot be established after several attempts, check for the following possible
problems:

• The D-BugS08 POD connector must be properly connected to the target systems BDM
connector. Make sure that the D-BugS08 POD’s BDM OUT connector is connected to
the target’s BDM IN connector.

• Check for the proper orientation of the BDM cable with the BDM connectors on both the

D-BugS08 POD and the target.

• Verify that the target’s BDM connector is wired to the proper MCU signals on each pin.

• If the target MCU does not have any firmware to execute, the CPU08 will most likely

“run away”, possibly executing a STOP instruction, preventing BDM communications
with the target MCU. In this case, Option 2 should be selected which will reset the target
device in Special Single Chip mode, placing it in Active Background.

• If the target MCU has it’s security feature enabled and the Flash is not blank, normal

BDM communication cannot be established with the device. Option ‘3’ must first be used
to erase the target Flash and disable security.

Because the MC9S08 Single Wire Background interface allows the reading and writing of target

D-BugS08 v1.x.x Reference Guide Page 7 Freescale Semiconductor

February 15, 2007
Copyright 2007 Freescale Semiconductor

system memory even when the target is running a user’s program, the D-BugS08 is always
available for the entry of commands. D-BugS08 commands that examine or modify target system
memory may be issued when either the ‘S>’ or ‘R>’ prompt is displayed.

4.1 The Erase & Unsecure Option

The security of a microcontroller’s program and data memories has long been a concern of
companies for one main reason. Because of the considerable time and money that is invested in
the development of proprietary algorithms and firmware, it is extremely desirable to keep the
firmware and associated data from prying eyes. The MC9S08 family members have been
designed with a device security mechanism that makes it nearly impossible to access the Flash
contents. Once the security mechanism has been enabled, access to the Flash through the BDM is
inhibited. Gaining access to either of these resources may only be accomplished by erasing the
contents of the Flash or through a built in back door mechanism. While having a back door
mechanism may seem to be a weakness of the security mechanism, the target application must
specifically support this feature for it to operate.

When a secured S08 device is reset in Special Single-chip mode, all on-chip resources are
disabled except for the I/O registers. In this mode the BDM commands are restricted to reading
and writing the I/O register space. Because all other BDM commands and on-chip resources are
disabled, the contents of the Flash and RAM remains protected. This functionality is adequate to
manipulate the Flash control registers to erase its contents.

The Erase and Unsecure option can be used to erase the Flash of a target MC9S08 device and
place it in the unsecured state. If the selected target device contains the Internal Clock Generator
Module (ICG), the Erase and Unsecure option will perform a calibration operation to determine
the correct ICGTRM register value to trim the 243 KHz on-chip oscillator to within a couple of
tenths of a percent of its nominal frequency. This value is programmed into Flash memory at
address $FFBE where an application can easily retrieve the value and initialize the ICGTRM
register during the ICG initialization.

4.2 BDM Debugger Option

The BDM debugger included with D-BugS08 is intended to be used by tool developers or
factory engineers when evaluating new silicon or debugging BDM communication problems,
however, it may also be useful to end customers. See Appendix B and the documentation
associated with the BDMDB command for additional information on the BDM debugger.

4.3 Load BDM Programmer Firmware Option

D-BugS08 v1.x.x Reference Guide Page 8 Freescale Semiconductor

February 15, 2007
Copyright 2007 Freescale Semiconductor

5.0 D-BugS08 Command Summary

The following list summarizes the D-BugS08 command set. Each command’s function and
command line syntax are described in detail.

• ASM - Single line assembler/disassembler.
• BAUD - Set the SCI communications BAUD rate.
• BDMDB - Enter the BDM command debugger.
• BF - Block Fill user memory with data.
• BR - Set/Display user breakpoints.
• CAL – Calibrate the target MCU’s internal clock reference
• CALL - Execute a user subroutine, return to D-BugS08 when finished.
• DEVICE - Select/define a new target MCU device.
• FBULK - Erase the target processor’s on-chip Flash EEPROM
• FLOAD - Program the target processor’s on-chip Flash EEPROM from S-Records
• FSERASE - Erase one or more sectors of target Flash
• G - Go. Begin execution of user program.
• GT - Go Till. Set a temporary breakpoint and begin execution of user program.
• HELP - Display D-BugS08 command set and command syntax.
• LOAD - Load user program in S-Record format.
• MD - Memory Display. Display memory contents in hex bytes/ASCII format.
• MDW - Memory Display Words. Display memory contents in hex words/ASCII

format.
• MM - Memory Modify. Interactively examine/change memory contents.
• MMW - Memory Modify Words. Interactively examine/change memory contents.
• MOVE - Move a block of memory.
• NOBR - Remove one/all user breakpoints.
• RD - Register Display. Display the CPU register contents.
• RESET - Reset the target CPU
• RM - Register Modify. Interactively examine/change CPU register contents.
• SO - Step over subroutine calls.
• STOP - Stop the execution of user code in the target processor and place the target

processor in background mode.
• T - Trace. Execute an instruction, disassemble it, and display the CPU registers.
• TCONFIG - Configure target before erasing or programming target Flash
• UPLOAD - Display memory contents in S-Record format.
• USEHBR - Use EVB/Target Hardware breakpoints.
• VER - Display the running version of D-BugS08
• VERF - Verify memory contents against S-Record Data.
• <RegisterName> <RegisterValue> - Set CPU <RegisterName> to <RegisterValue>

D-BugS08 v1.x.x Reference Guide Page 9 Freescale Semiconductor

February 15, 2007
Copyright 2007 Freescale Semiconductor

ASM - Single Line Assembler/Disassembler Command

Command Line Format

 ASM <Address>

Parameter Description

<Address> - A 16-bit hexadecimal number or simple expression

Command Description

The assembler/disassembler is an interactive memory editor that allows memory contents to
be viewed and altered using assembly language mnemonics. Each entered source line is
translated into machine language code and placed into memory at the time of entry. When
displaying memory contents, each instruction is disassembled into its source mnemonic form
and displayed along with the hexadecimal machine code and any instruction operands.

Assembler mnemonics and operands may be entered in any mix of upper and lower case
letters. Any number of spaces may appear between the assembler prompt and the instruction
mnemonic or between the instruction mnemonic and the operand. By default, numeric values
appearing in the operand field are interpreted as signed decimal numbers. Placing a $ in front
of a number will cause the number to be interpreted as a hexadecimal number.

When an instruction has been disassembled and displayed, the D-BugS08 prompt is
displayed following the disassembled instruction. If a carriage return is entered immediately
following the prompt, the next instruction in memory is disassembled and displayed on the
next line.

If a CPU08 instruction is entered following the prompt, the entered instruction is assembled
and placed in memory. The line containing the new entry is erased and the new instruction is
disassembled and displayed on the same line. The contents of the next memory location(s) is
disassembled and displayed on the screen.

The instruction mnemonics and operand formats accepted by the assembler follow the syntax
as described in the HCS08 Family Reference Manual.

When entering branch instructions, the number placed in the operand field should be the
absolute destination address of the instruction. The assembler will calculate the twos
compliment offset of the branch.

The assembly/disassembly process may be terminated by entering a period (.) following the
assembler prompt.

D-BugS08 v1.x.x Reference Guide Page 10 Freescale Semiconductor

February 15, 2007
Copyright 2007 Freescale Semiconductor

Restrictions

None.

Example

S>asm 1080
1080 A603 LDA #$03 >
1082 C71802 STA $1802 >
1085 C6FFBE LDA $FFBE >
1088 B74E STA $4E >
108A A608 LDA #$08 >
108C B748 STA $48 >
108E A670 LDA #$70 >
1090 B749 STA $49 >.
S>

D-BugS08 v1.x.x Reference Guide Page 11 Freescale Semiconductor

February 15, 2007
Copyright 2007 Freescale Semiconductor

Assembly Operand Format

This section describes the operand format used by the assembler when assembling CPU08
instructions. The operand format accepted by the assembler is described separately in the
HCS08 Family Reference Manual. Rather that describe the numeric format accepted for each
instruction, some general rules will be used. Exceptions and complicated operand formats are
described separately.

In general, anywhere the assembler expects a numeric value in the operand field, either a
decimal or hexadecimal value may be entered. Decimal numbers are entered as signed
constants having a range of -32768..65535. A leading minus sign (-) indicates negative
numbers, the absence of a leading minus sign indicates a positive number. A leading plus
sign (+) is not allowed. Hexadecimal numbers must be entered with a leading dollar sign ($)
followed by one to four hexadecimal digits. The default number base is decimal.

For all branching instructions, (Bcc, BRSET, BRCLR, DBNZ, CBEQ) the number entered in
the address portion of the operand field must be the absolute address of the branch
destination. The assembler will calculate the two’s compliment offset to be placed in the
assembled object code.

Disassembly Operand Format

This section describes the operand format for the disassembler that is used in conjunction
with the single line assembler. The operand format used by the disassembler is described
separately in the HCS08 Family Reference Manual. Rather that describe the numeric format
used for each instruction, some general rules will be applied. Exceptions and complicated
operand formats will be described separately.

All numeric values disassembled as hexadecimal numbers will be preceded by a dollar sign
($) to avoid being confused with values disassembled as signed decimal numbers.

For all branch (Bcc, BRSET, BRCLR, DBNZ, CBEQ) instructions the numeric value of the
address portion of the operand field will be displayed as the hexadecimal absolute address of
the branch destination.

All offsets used with indexed addressing modes will be disassembled as unsigned decimal
numbers with the following exception.

Instructions using direct addressing will have the direct address disassembled as a two digit
hexadecimal number.

Instructions using extended addressing will have the direct address disassembled as a four
digit hexadecimal number.

All 8-bit immediate values will be disassembled as hexadecimal numbers.

D-BugS08 v1.x.x Reference Guide Page 12 Freescale Semiconductor

February 15, 2007
Copyright 2007 Freescale Semiconductor

All 16-bit immediate values will be disassembled as hexadecimal numbers.

D-BugS08 v1.x.x Reference Guide Page 13 Freescale Semiconductor

February 15, 2007
Copyright 2007 Freescale Semiconductor

BAUD - Change The Communications BAUD Rate

Command Line Format

 BAUD <BAUDRate> [;t]

Parameter Description

<BAUDRate> An unsigned 32-bit decimal number
;t The ASCII string ‘;t’ or ‘;T’

Command Description

The BAUD command is used to change the communications rate of the SCI that is used by
D-Bug12 to communicate with the user.

Normally, the newly specified baud rate is saved in nonvolatile memory so that it is used the
next time the hardware running D-Bug12 is powered up or reset. The ;t command line
option may be used to make the baud rate change temporary. The next time the hardware is
powered up or reset D-Bug12 will revert to the previously saved baud rate.

Restrictions

Because the <BAUDRate> parameter supplied on the command line is a 32-bit unsigned
integer, BAUD rates greater than 65535 baud may be set using this command. The SCI
BAUD rate divider value for the requested BAUD rate is calculated using the bus clock value
that is supplied in the Customization Data area. Because the SCI BAUD rate divider is a 13-
bit counter, certain BAUD rates may not be supported at particular MCU clock frequencies.

Example

>baud 50

Invalid BAUD Rate
>baud 115200
Change Terminal BR, Press Return
>

D-BugS08 v1.x.x Reference Guide Page 14 Freescale Semiconductor

February 15, 2007
Copyright 2007 Freescale Semiconductor

BDMDB - Enter BDM Debugger

Command Line Format

 BDMDB

Parameter Description

None.

Command Description

The BDMDB command halts normal D-BugS08 operation and enters the BDM debugger.
Using D-BugS08’s low level BDM driver routines, the BDM debugger allows individual
BDM commands to be sent to a target device directly from the command line. As shown in
the example, upon entering the BDM debugger, the command line prompt changes to a
question mark (?). Note that while running the BDM debugger, no target BDM
communication occurs other than during the execution of a command. Unlike D-BugS08,
when running the BDM debugger, no checks are performed to ensure a valid target
connection with a target MCU exists before executing a command.

See Appendix B for a complete description of the BDM debugger commands.

Restrictions

None.

Example

>bdmdb
BDM Command Debugger
For Commands type "HELP"

?

D-BugS08 v1.x.x Reference Guide Page 15 Freescale Semiconductor

February 15, 2007
Copyright 2007 Freescale Semiconductor

BF - Fill memory with data

Command Line Format

 BF <StartAddress> <EndAddress> [<Data>] [;nv]

Parameter Description

<StartAddress> A 16-bit hexadecimal number or simple expression
<EndAddress> A 16-bit hexadecimal number or simple expression
<Data> An 8-bit hexadecimal number
;nv The ASCII string ‘;nv’ in upper, lower or mixed case

Command Description

The Block Fill command is used to place a single 8-bit value into a range of memory
locations. <StartAddress> is the first memory location written with data and <EndAddress>
is the last memory location written with data. If the <data> parameter is omitted the memory
range is filled with the value $00.

Normally the Block Fill command verifies each memory location as it is written. The ‘;nv’
option prevents the Block Fill command from verifying writes to the specified memory
range. This option can be useful for testing a range of memory, especially RAM or
EEPROM, for defective locations.

Restrictions

None.

Example

>bf 400 fff 0
>bf x x+$ff 55
>

D-BugS08 v1.x.x Reference Guide Page 16 Freescale Semiconductor

February 15, 2007
Copyright 2007 Freescale Semiconductor

BR - Set/Display User Breakpoints

Command Line Format

 BR [<Address>…]

Parameter Description

<Address> A 16-bit hexadecimal number or simple expression

Command Description

The BR command is used to set a breakpoint at a specified address or to display any
previously set breakpoints. The function of a breakpoint is to halt user program execution
when the program reaches the breakpoint address. When a breakpoint address is encountered,
D-BugS08 will disassemble the instruction at the breakpoint address, print the CPU08’s
register contents, and wait for the next D-BugS08 command to be entered by the developer.

Breakpoints are set by entering the breakpoint command followed by one or more breakpoint
addresses. Entering the breakpoint command without any breakpoint addresses will display
all the currently set breakpoints.

A maximum of 10 breakpoints may be set at one time when using software breakpoints. A
maximum of 3 breakpoints may be set when using the target CPU’s hardware breakpoint
capability. For additional information on D-BugS08’s hardware breakpoint support, see the
USEHBR command description.

Restrictions

D-BugS08 implements the software breakpoint function by replacing the opcode at the
breakpoint address with a BGND instruction. Breakpoints may only be set at an opcode
address and breakpoints may only be placed at memory addresses implemented as RAM.

When using the target hardware breakpoints, D–BugS08 utilizes the the BDC’s single
hardware breakpoint and the two breakpoints available in the target MCU’s Debug (DBG)
module. Both of these breakpoint modules utilize the CPU08 instruction fetch tagging
mechanism which only allows breakpoints to be set on instruction opcodes.

New breakpoints may not be set with the BR command when the ‘R>’ prompt is being
displayed. However, the BR command may be used to display breakpoints that are currently
set in the user’s running program.

D-BugS08 v1.x.x Reference Guide Page 17 Freescale Semiconductor

February 15, 2007
Copyright 2007 Freescale Semiconductor

Example

>br 35ec 2f80 c592
Breakpoints: 35ec 2f80 c592

>br
Breakpoints: 35EC 2F80 C592

>

D-BugS08 v1.x.x Reference Guide Page 18 Freescale Semiconductor

February 15, 2007
Copyright 2007 Freescale Semiconductor

BS - Block Search, Search an Address Range For A Data Pattern

Command Line Format

 BS <StartAddress> <EndAddress> '<ASCIIString>' | <Data8> [<Data8>]

Parameter Description

<StartAddress> A 16-bit hexadecimal number or simple expression OR an expanded

memory address
<EndAddress> A 16-bit hexadecimal number or simple expression OR an expanded

memory address
<ASCIIString> An ASCII string consisting of any printable characters EXCEPT the single

quote (') character
<Data8> An 8-bit hexadecimal number or simple expression

Command Description

The block search command can be used to search an address range for a data pattern. The
specified data can be supplied as a quoted ASCII string or up to eight hexadecimal bytes. If
the data pattern is found in the specified memory range, the address of the first byte of the
data pattern is displayed. Note that when using an ASCII string as the data pattern, only
printable ASCII characters excluding the single quote (') character may be used. The search
start and end addresses are specified using a 16-bit hexadecimal number or simple expression
and can span the entire 64K memory map.

Restrictions

If the memory range specified by <StartAddress> and <EndAddress> does not contain at
least as many bytes as the specified data, the command will be terminated and an appropriate
error message displayed.

Example

S>bs c000 ffff 'HCS'
Data Found at: $F0AD
S>

D-BugS08 v1.x.x Reference Guide Page 19 Freescale Semiconductor

February 15, 2007
Copyright 2007 Freescale Semiconductor

CAL – Calibrate the target MCU’s internal clock reference

Command Line Format

 CAL [<TargetBusFreq>][;P]

Parameter Description

< TargetBusFreq > A 16-bit decimal number representing the desired target bus speed in

KHz.
;P The ASCII string “;P” in upper, lower or mixed case.

Command Description

On S08 devices containing an internal clock reference generator, the CALibrate command
can be used to trim the reference to within ±0.2%, or better, of the supplied target bus
frequency. The allowable values for the <TargetBusFreq> parameter will vary depending on
specifications of the selected target device. On devices such as the S08DZ and S08QG family
members, the internal reference generator can be trimmed to produce a range of bus
frequencies. The table below shows examples for some of the currently available S08
devices.

Device Family Max. Bus Frequency (KHz) Min. Bus Frequency (KHz)
MC9S08DZxx 20000 16000
MC9S08QGx 10000 8000
MC9S08QD8 8000 8000
MC9S08AWxx 4443 4443

The MC9S08AWxx family, and all other S08’s using the Internal Clock Generator (ICG)
module, is a special case since the FLL in the ICG itself may be used to generate a wide
range of bus frequencies using the Multiplication Factor (MFD) and Reduced Frequency
Divisor (RFD) bits. For the purpose of calibrating the internal reference generator, the listed
maximum and minimum bus frequency of 4443 KHz represents the bus frequency produced
by the FLL with the minimum MFD multiplication factor of 4 and the minimum RFD
reduction factor of 1 with the internal reference trimmed to 243 KHz.

If the <TargetBusFreq> parameter is omitted from the command line, the target clock
reference generator will be calibrated to produce the maximum bus frequency.

The ;P option, if present, will cause the calculated trim value(s) to be programmed into the
the Flash locations on the target device reserved for that purpose. Note that all other data the
Flash sector containing the trim information is preserved.

D-BugS08 v1.x.x Reference Guide Page 20 Freescale Semiconductor

February 15, 2007
Copyright 2007 Freescale Semiconductor

Note: The clock calibration procedure utilizes the BDC SYNC pulse to indirectly measure

the target clock frequency. To accurately measure the target clock using this method,
D-BugS08 configures the output of the clock module to use the internal reference
clock as the system clock source. Because the bus clock is the output of the clock
module divided by two, the clock frequency measured is actually one half the
reference frequency. The CAL command reports double the measured frequency as
the value of the internal reference clock. The reported bus clock frequency is
calculated based on the measured reference frequency.

Note: The absolute accuracy of the calibration performed by D-BugS08 on the internal

clock reference of the target device is dependent on the absolute accuracy of the clock
source of the MCU running D-BugS08. Calibration accuracy relative to D-BugS08’s
clock source will be within the target device’s specified trimming accuracy
specification.

Restrictions

None.

Example

S>device

Device: S08QG8, MC9S08QG8
Flash: $E000 - $FFFF
RAM: $0060 - $025F
I/O Regs: $0000 - $005F, $1800 - $184F
Target Bus Frequency: 10000 KHz

TRIM Register Value $93
FTRIM Register Value $00
Measured reference clock frequency: 31254 Hz
Calculated bus frequency: 8001024 Hz

Programming trim value(s) into Flash...

S>

D-BugS08 v1.x.x Reference Guide Page 21 Freescale Semiconductor

February 15, 2007
Copyright 2007 Freescale Semiconductor

CALL - Execute A User Subroutine

Command Line Format

 CALL [<Address>]

Parameter Description

<Address> A 16-bit hexadecimal number or simple expression

Command Description

The CALL command is used to execute a subroutine and return to the D-BugS08 monitor
program when the final RTS of the subroutine is executed. When control is returned to D–
BugS08, the CPU register contents will be displayed. All CPU registers contain the values at
the time the final RTS instruction was executed with the exception of the program counter
(PC). The PC will contain the starting address of the subroutine. If a subroutine address is not
supplied on the command line, the current value of the Program Counter (PC) will be used as
the starting address.

NOTE: No breakpoints are placed in memory before execution is transferred to user code.

Restrictions

If the called subroutine modifies the value of the stack pointer during its execution, it MUST
restore the stack pointer’s original value before executing the final RTS of the called
subroutine. This restriction is required because D–BugS08 places four bytes of data on the
users stack that causes control to return to D-BugS08 when the final RTS of the subroutine is
executed. Obviously, any subroutine must obey this restriction to execute properly.

The CALL command cannot be issued when the ‘R>’ prompt is being displayed indicating
that the target system is already running a user program.

Example

>call 1080
Subroutine Call Returned

 PC SP HX A CCR = V--H INZC
1080 00FF 0000 00 0110 1000
1080 A603 LDA #$03
S>

D-BugS08 v1.x.x Reference Guide Page 22 Freescale Semiconductor

February 15, 2007
Copyright 2007 Freescale Semiconductor

DEVICE - Specify a target MCU device type

Command Line Format

 DEVICE
 DEVICE ?
 DEVICE <DeviceName>

Parameter Description

<DeviceName> Maximum of 9 ASCII characters used to select a target MCU device

Command Description

Entering “DEVICE” on the command line followed by a carriage return will display the
name of the currently selected device the on-chip Flash’s starting and ending address, the on-
chip RAM’s starting and ending address, and the Direct Page and High Page I/O Register
address ranges.

Entering the DEVICE command followed by the ASCII question mark character (?) will
display a list of all the supported HCS08 target devices.

Note that D-BugS08 will automatically select the proper device by comparing the value in
the target MCU’s SDIDH and SDIDL registers with the values stored in its device table.

 Restrictions

None.

Example

R>device

Device: S08GB60, MC9S08GB60, MC9S08GT60
Flash: $1080 - $17FF, $182C - $FFFF
RAM: $0080 - $107F
I/O Regs: $0000 - $007F, $1800 - $182B
Target Bus Frequency: 20000 KHz

R>

D-BugS08 v1.x.x Reference Guide Page 23 Freescale Semiconductor

February 15, 2007
Copyright 2007 Freescale Semiconductor

FBULK - Erase target on-chip Flash EEPROM Memory

Command Line Format

 FBULK [;<SecByteValue>]

Parameter Description

<SecByteValue> An 8-bit hexadecimal number

Command Description

The FBULK command is used to erase the entire contents of the on-chip Flash memory of a
target MCU in a single operation. After the bulk erase operation has been performed, each
on-chip Flash location is checked for contents of $FF.

The optional <SecByteValue> allows a value other than $FE to be programmed into the
security byte of HCS08 target device. Programming a value other than 1:0 into the lower two
bits of the security byte will cause the security feature to be enabled causing a loss of BDM
communications when the Flash is not blank.

If the selected target device contains the Internal Clock Generator Module (ICG), Internal
Clock Source Module (ICS) or Multi-purpose Clock Generator (MCG), the FBULK
command will preserve any clock trim information stored in the Flash locations reserved for
this purpose. If the reserved Flash locations are blank before the erasure of the Flash, the
FBULK command will perform a calibration operation of the on-chip clock reference. This
information is then programmed into the reserved Flash location(s) on the target device.

Note: The absolute accuracy of the calibration performed by D-BugS08 on the internal

clock reference of the target device is dependent on the absolute accuracy of the clock
source of the MCU running D-BugS08. Calibration accuracy relative to D-BugS08’s
clock source will be within the target device’s specified trimming accuracy
specification.

Restrictions

None.

Example

S>fbulk
S>

D-BugS08 v1.x.x Reference Guide Page 24 Freescale Semiconductor

February 15, 2007
Copyright 2007 Freescale Semiconductor

FLOAD - Program on-chip Flash memory from S-Records

Command Line Format

 FLOAD [<AddressOffset>] [;nf]

Parameter Description

<AddressOffset> A 16-bit hexadecimal number
;nf The ASCII string ‘;nf’ or ‘;NF’

Command Description

The FLOAD command is used to program a target device’s Flash EEPROM memory with
the data contained in S-Record object files. The address offset, if supplied, is added to the
load address of each S-Record before an S-Record’s data bytes are placed in memory.
Providing an address offset other than zero allows object code or data to be programmed into
memory at a location other than the address for which it was assembled or compiled.

D–BugS08 uses XOn/XOff handshaking to control the flow of S-Record data between the
host computer and the EVB. As each S-Record is received and processed, an ASCII asterisk
character (*) is sent to the screen. Note that this is only to indicate programming progress and
is NOT used for handshaking purposes.

The FLOAD command is terminated when D-BugS08 receives an ‘S9’ end of file record. If
the object file being loaded does not contain an ‘S9’ record, D–BugS08 will not return its
prompt and will continue to wait for the end of file record. Pressing a system Reset will
return D–BugS08 to its command line prompt.

The ‘;nf’ option is used to prevent the ASCII asterisk character (*) from being sent to the
screen as each S-Record is received.

Restrictions

Because the on-chip Flash EEPROM is only bulk erasable, the FBULK command should be
used before attempting to program the Flash memory using the FLOAD command.

The FLOAD command cannot be used with S-Records that contain a code/data field longer
than 64 bytes. Sending an S-Record with a code/data field longer than 64 bytes will cause D–
BugS08 to terminate the FLOAD command the issue an error message.

Because the FLOAD command downloads a small ‘driver’ program into the target MCU’s
on chip RAM, D-BugS08’s breakpoint table is cleared before beginning execution of the
‘driver’. This is necessary to prevent previously set breakpoints from accidentally halting the

D-BugS08 v1.x.x Reference Guide Page 25 Freescale Semiconductor

February 15, 2007
Copyright 2007 Freescale Semiconductor

execution of the driver program.

Example

S>fload
**
**

S>

D-BugS08 v1.x.x Reference Guide Page 26 Freescale Semiconductor

February 15, 2007
Copyright 2007 Freescale Semiconductor

FSERASE - Erase one or more sectors of target Flash

Command Line Format

 FSERASE <StartAddress> [<EndAddress>]

Parameter Description

<StartAddress> A 16-bit hexadecimal number or simple expression
<EndAddress> A 16-bit hexadecimal number or simple expression

Command Description

The FSERASE command allows one or more sectors of target Flash memory to be erased.
Supplying only the <StartAddress> parameter will erase a single Flash sector associated with
the supplied address. Supplying the optional <EndAddress> will erase a range of sectors
encompassed by the <StartAddress> and <EndAddress> parameters. Note that the range of
Flash memory erased is <StartAddress> & SectorMask through <EndAddress>
& SectorMask + (SectorSize - 1). Where SectorMask has a value of $FE00
for Flash memory containing 512 byte sectors.

Before the sector erase operation is performed, the target device is reset and the target’s
FPROT register is written to $FF, allowing any Flash sectors to be erased regardless of the
state of the Flash protection byte.

Note: If the FSERASE command is used to erase the sector containing the security byte, the

security byte will be programmed to $FE to prevent the target device from being left
in the secured state. If the selected target device contains the Internal Clock Generator
Module (ICG), Internal Clock Source Module (ICS) or Multi-purpose Clock
Generator (MCG), the FBULK command will preserve any clock trim information
stored in the Flash locations reserved for this purpose. If the reserved Flash locations
are blank before the erasure of the Flash, the FBULK command will perform a
calibration operation of the on-chip clock reference. This information is then
programmed into the reserved Flash location(s) on the target device.

Note: The absolute accuracy of the calibration performed by D-BugS08 on the internal

clock reference of the target device is dependent on the absolute accuracy of the clock
source of the MCU running D-BugS08. Calibration accuracy relative to D-BugS08’s
clock source will be within the target device’s specified trimming accuracy
specification.

D-BugS08 v1.x.x Reference Guide Page 27 Freescale Semiconductor

February 15, 2007
Copyright 2007 Freescale Semiconductor

Restrictions

The FSERASE command may not be used when the ‘R>’ prompt is being displayed
indicating that the target system is running a user program.

Example

S>fserase 8000 8fff
S>

D-BugS08 v1.x.x Reference Guide Page 28 Freescale Semiconductor

February 15, 2007
Copyright 2007 Freescale Semiconductor

Go, begin execution of user code

Command Line Format

 G [<Address>]

Parameter Description

<Address> A 16-bit hexadecimal number or simple expression

Command Description

The G command is used to begin the execution of user code in real time. Before beginning
execution of user code, any breakpoints set using the BR command are placed in memory.
Execution of the user program will continue until a user breakpoint is encountered or a CPU
exception occurs. When user code halts for one of these reasons and control is returned to D–
BugS08, a message is displayed explaining the reason for program termination. In addition,
D-BugS08 displays the CPU08’s register contents, disassembles the instruction at the current
PC address, and waits for the next D–BugS08 command to be entered by the user.

If a starting address is not supplied in the command line parameter, program execution will
begin at the address defined by the current value of the Program Counter.

Restrictions

The G command cannot be issued when the ‘R>’ prompt is being displayed indicating that
the target system is already running a user program.

Example

S>g 1080
R>md 8000

8000 FF FF FF FF - FF FF FF FF - FF FF FF FF - FF FF FF FF
R>
User Breakpoint Encountered

 PC SP HX A CCR = V--H INZC
10A2 00FF 0000 01 0110 1000
10A2 1000 BSET 0,$00
S>

D-BugS08 v1.x.x Reference Guide Page 29 Freescale Semiconductor

February 15, 2007
Copyright 2007 Freescale Semiconductor

GT - Go Until, Execute user code until temporary breakpoint is reached

Command Line Format

 GT <Address>

Parameter Description

<Address> A 16-bit hexadecimal number or simple expression

Command Description

The GT command is similar to the G command except that a temporary breakpoint is placed
at the address supplied on the command line. Any breakpoints set by the BR command are
NOT placed in the user’s code before program execution begins. Program execution begins
at the address defined by the current value of the Program Counter. When executing code
reaches the temporary breakpoint and control is returned to D-BugS08, a message is
displayed explaining the reason for user program termination. In addition, D-BugS08
displays the CPU08’s register contents, disassembles the instruction at the current PC
address, and waits for the next D-BugS08 command to be entered by the user.

Restrictions

The GT command cannot be issued when the ‘R>’ prompt is being displayed indicating that
the target system is already running a user program.

Example

S>gt 10AB
R>
Temporary Breakpoint Encountered

 PC SP HX A CCR = V--H INZC
10AB 00FF 0000 01 0110 1000
10AB 20F3 BRA $10A0

S>

D-BugS08 v1.x.x Reference Guide Page 30 Freescale Semiconductor

February 15, 2007
Copyright 2007 Freescale Semiconductor

HELP - Display D-BugS08 command summary

Command Line Format

 HELP

Parameter Description

No parameters are required

Command Description

The HELP command is used to display a summary of the D-BugS08 command set. Each
command is shown along with its command line format and a brief description of the
command's function. The commands are listed in alphabetical order.

Restrictions

None.

Error Conditions

None.

D-BugS08 v1.x.x Reference Guide Page 31 Freescale Semiconductor

February 15, 2007
Copyright 2007 Freescale Semiconductor

Example

>help
ASM <Address> Single line assembler/disassembler
 <CR> Disassemble next instruction
 <.> Exit assembly/disassembly
BAUD <baudrate> [;t] Set communications rate for the terminal
BDMDB Enter the BDM command debugger
BF <StartAddress> <EndAddress> [<data>] [;nv] Fill memory with data
BR [<Address>] Set/Display breakpoints
BS <StartAddress> <EndAddress> '<String>' | <Data8> [<Data8>] Block Search
CALL [<Address>] Call user subroutine at <Address>
DEVICE [<DevName>] | [?] Display/select target device
FBULK [;<SecByteVal>] Erase entire target FLASH contents
FLOAD [<AddressOffset>] [;nf] Load S-Records into target Flash
FSERASE <StartAddress> [<EndAddress>] Erase one or more sectors of Flash
G [<Address>] Begin/continue execution of user code
GT <Address> Set temporary breakpoint at <Address> & execute user code
HELP Display D-Bug12 command summary
LOAD [[<AddressOffset>] Load S-Records into memory
MD <StartAddress> [<EndAddress>] Memory Display Bytes
MDW <StartAddress> [<EndAddress>] Memory Display Words
MM <StartAddress> Modify Memory Bytes
 <CR> Examine/Modify next location
 </> or <=> Examine/Modify same location
 <^> or <-> Examine/Modify previous location
 <.> Exit Modify Memory command
MMW <StartAddress> Modify Memory Words (same subcommands as MM)
MOVE <StartAddress> <EndAddress> <DestAddress> Move a block of memory
NOBR [<address>] Remove One/All Breakpoint(s)
RD Display CPU registers
RESET Reset target CPU
RM Modify CPU Register Contents
SO Step Over subroutine calls
STOP Stop target CPU
T [<count>] Trace <count> instructions
TCONFIG [<Address>=<Data8>] | [DLY=<mSDelay>] | NONE Configure Target Device
UPLOAD <StartAddress> <EndAddress> [;f] [;<SRecSize>] S-Record Memory display
USEHBR [ON | OFF] Use Hardware/Software Breakpoints
VER Display D-BugS08's Version Number
VERF [[<AddressOffset>] [;f]] | [;b] Verify S-Records against memory contents
<Register Name> <Register Value> Set register contents
 Register Names: PC, SP, HX, A, CCR
 CCR Status Bits: H, I, N, Z, V, C
>

D-BugS08 v1.x.x Reference Guide Page 32 Freescale Semiconductor

February 15, 2007
Copyright 2007 Freescale Semiconductor

LOAD - Load user program in S-Record format

Command Line Format

 LOAD [[<AddressOffset>]

Parameter Description

<AddressOffset> A 16-bit hexadecimal number

Command Description

The Load command is used to load S-Record object files into user memory from an external
device. The address offset, if supplied, is added to the load address of each S-Record before
an S-Record’s data bytes are placed in memory. Providing an address offset other than zero
allows object code or data to be loaded into memory at a location other than that for which it
was assembled.

During the loading process, the S-Record data is not echoed to the control console. However,
for each ten S-Records that are successfully loaded, an ASCII asterisk character (*) is sent to
the control console. When an S-Record file has been successfully loaded, D-BugS08 will
issue its prompt.

The Load command is terminated when D-BugS08 receives an ‘S9’ end of file record. If the
object file being loaded does not contain an ‘S9’ record, D–BugS08 will not return its prompt
and will continue to wait for the end of file record. Pressing a system’s Reset button will
return D–BugS08 to its command line prompt.

Restrictions

None.

Example

>load 1000

>

D-BugS08 v1.x.x Reference Guide Page 33 Freescale Semiconductor

February 15, 2007
Copyright 2007 Freescale Semiconductor

MD - Display memory in hexadecimal bytes and ASCII format

Command Line Format

 MD <StartAddress> [<EndAddress>]

Parameter Description

<StartAddress> A 16-bit hexadecimal number or simple expression
<EndAddress> A 16-bit hexadecimal number or simple expression

Command Description

The memory display command displays the contents of memory in both hexadecimal bytes
and ASCII, 16-bytes on each line. The <StartAddress> parameter must be supplied, however,
the <EndAddress> parameter is optional. When the <EndAddress> parameter is not supplied,
a single line is displayed.

The number supplied as the <StartAddress> parameter is rounded down to the next lower
multiple of 16. While the number supplied as the <EndAddress> parameter is rounded up to
the next higher multiple of 16 - 1. This causes each line to display memory in the range of
$xxx0 through $xxxF. For example if $205 was entered as the start address and $217 as the
ending address, the actual memory range displayed would be $200 through $21F.

Restrictions

None.

Example

>md 800
0800 AA 04 37 6A - 00 06 27 F9 - 35 AE 78 0D - B7 56 78 20 ..7j..'.5.x..Vx

>md 800 87f
0800 AA 04 37 6A - 00 06 27 F9 - 35 AE 78 0D - B7 56 78 20 ..7j..'.5.x..Vx
0810 B6 36 27 F9 - 35 AE 27 F9 - 35 9E 27 F9 - 35 BE B5 28 .6'.5.'.5.'.5..(
0820 27 F9 35 D6 - 37 B8 00 0F - 37 82 01 0A - 37 36 FF F0 '.5.7...7...76..
0830 7C 10 37 B3 - 00 00 37 B6 - 00 0F AA 04 - A5 02 37 B6 |.7...7.......7.
0840 00 0F 27 78 - 37 6A 00 06 - 27 F9 35 78 - 27 F9 35 56 ..'x7j..'.5x'.5V
0850 78 0D B7 10 - 78 3B 37 86 - 00 DC 27 F9 - 35 48 78 57 x...x;7...'.5HxW
0860 37 86 00 DE - F5 01 EA 09 - 37 B5 0D 0A - 27 F9 36 2A 7.......7...'.6*
0870 A5 00 37 65 - 00 02 27 F9 - 35 E8 37 9C - 37 4C F5 02 ..7e..'.5.7.7L..

D-BugS08 v1.x.x Reference Guide Page 34 Freescale Semiconductor

February 15, 2007
Copyright 2007 Freescale Semiconductor

MDW - Display memory in hexadecimal words and ASCII format

Command Line Format

 MDW <StartAddress> [<EndAddress>]

Parameter Description

<StartAddress> A 16-bit hexadecimal number or simple expression
<EndAddress> A 16-bit hexadecimal number or simple expression

Command Description

The memory display command displays the contents of memory in both hexadecimal words
and ASCII, 16-bytes on each line. The <StartAddress> parameter must be supplied, however,
the <EndAddress> parameter is optional. When the <EndAddress> parameter is not supplied,
a single line is displayed.

The number supplied as the <StartAddress> parameter is rounded down to the next lower
multiple of 16. While the number supplied as the <EndAddress> parameter is rounded up to
the next higher multiple of 16 - 1. This causes each line to display memory in the range of
$xxx0 through $xxxF. For example if $205 were entered as the start address and $217 as the
ending address, the actual memory range displayed would be $200 through $21F.

Restrictions

None.

Example

>mdw 800
0800 AA04 376A - 0006 27F9 - 35AE 780D - B756 7820 ..7j..'.5.x..Vx

>mdw 800 87f
0800 AA04 376A - 0006 27F9 - 35AE 780D - B756 7820 ..7j..'.5.x..Vx
0810 B636 27F9 - 35AE 27F9 - 359E 27F9 - 35BE B528 .6'.5.'.5.'.5..(
0820 27F9 35D6 - 37B8 000F - 3782 010A - 3736 FFF0 '.5.7...7...76..
0830 7C10 37B3 - 0000 37B6 - 000F AA04 - A502 37B6 |.7...7.......7.
0840 000F 2778 - 376A 0006 - 27F9 3578 - 27F9 3556 ..'x7j..'.5x'.5V
0850 780D B710 - 783B 3786 - 00DC 27F9 - 3548 7857 x...x;7...'.5HxW
0860 3786 00DE - F501 EA09 - 37B5 0D0A - 27F9 362A 7.......7...'.6*
0870 A500 3765 - 0002 27F9 - 35E8 379C - 374C F502 ..7e..'.5.7.7L..
>

D-BugS08 v1.x.x Reference Guide Page 35 Freescale Semiconductor

February 15, 2007
Copyright 2007 Freescale Semiconductor

MM - Modify memory bytes in hexadecimal format

Command Line Format

 MM <Address> [<data>]

Parameter Description

<Address> A 16-bit hexadecimal number or simple expression.
<data> An 8-bit hexadecimal number.

Command Description

The memory modify word command allows the contents of memory to be examined and/or
modified as 8-bit hexadecimal data. If the 8-bit data parameter is present on the command
line, the byte at memory location at <Address> is replaced with <data>. If not, D-BugS08
will enter the interactive memory modify mode. In the interactive mode, each byte is
displayed on a separate line following the data's address. Once the memory modify command
has been entered, several subcommands are used for the modification and verification of
memory contents. These subcommands have the following format:

[<Data>]<CR> Optionally update current location and display the next location
[<Data>] / or = Optionally update current location and redisplay the current location
[<Data>] ^ or - Optionally update current location and display the previous location
[<Data>] . Optionally update current location and exit Memory Modify

With the exception of the carriage return, the subcommand must be separated from any
entered data with at least one space character. If an invalid subcommand character is entered,
an appropriate error message will be issued and the contents of the current memory location
shall be redisplayed.

Restrictions

While there are no restrictions regarding the use of the MM command, caution should be
used when modifying target memory while user code is running. Accidentally modifying
target memory containing program code could lead to program run away.

D-BugS08 v1.x.x Reference Guide Page 36 Freescale Semiconductor

February 15, 2007
Copyright 2007 Freescale Semiconductor

Example

>mm 800
0800 00 <CR>
0801 F0 FF
0802 00 ^
0801 FF <CR>
0802 00 <CR>
0803 08 55 /
0803 55 .
>

D-BugS08 v1.x.x Reference Guide Page 37 Freescale Semiconductor

February 15, 2007
Copyright 2007 Freescale Semiconductor

MMW - Modify memory words in hexadecimal format

Command Line Format

 MMW <Address> [<data>]

Parameter Description

<Address> A 16-bit hexadecimal number or simple expression
<data> A 16-bit hexadecimal number

Command Description

The memory modify word command allows the contents of memory to be examined and/or
modified as 16-bit hexadecimal data. If the 16-bit data parameter is present on the command
line, the word at memory location at <Address> is replaced with <data>. If not, D-BugS08
will enter the interactive memory modify mode. In the interactive mode, each byte is
displayed on a separate line following the data's address. Once the memory modify command
has been entered, several subcommands are used for the modification and verification of
memory contents. These subcommands have the following format:

[<Data>]<CR> Optionally update current location and display the next location
[<Data>] / or = Optionally update current location and redisplay the current location
[<Data>] ^ or - Optionally update current location and display the previous location
[<Data>] . Optionally update current location and exit Memory Modify

With the exception of the carriage return, the subcommand must be separated from any
entered data with at least one space character. If an invalid subcommand character is entered,
an appropriate error message will be issued and the contents of the current memory location
shall be redisplayed.

If the <Address> parameter corresponds to an even byte address, values read from and/or
written to memory will be performed as aligned word accesses. This guarantees data
coherency for peripherals that require a single access to their 16-bit registers.

Restrictions

While there are no restrictions regarding the use of the MMW command, caution should be
used when modifying target memory while user code is running. Accidentally modifying
target memory containing program code could lead to program run away.

D-BugS08 v1.x.x Reference Guide Page 38 Freescale Semiconductor

February 15, 2007
Copyright 2007 Freescale Semiconductor

Example

>mmw 800
0800 00F0 <CR>
0802 0008 AA55 /
0804 843F ^
0802 AA55 <CR>
0804 843F <CR>
0806 C000 .
>

D-BugS08 v1.x.x Reference Guide Page 39 Freescale Semiconductor

February 15, 2007
Copyright 2007 Freescale Semiconductor

MOVE - Move a Block of Memory

Command Line Format

 MOVE <StartAddress> <EndAddress> <DestAddress>

Parameter Description

<StartAddress> A 16-bit hexadecimal number or simple expression
<EndAddress> A 16-bit hexadecimal number or simple expression
<DestAddress> A 16-bit hexadecimal number or simple expression

Command Description

The MOVE command is used to move a block of memory from one location to another a
byte at a time. The number of bytes moved is one more than the <EndAddress> -
<StartAddress>. The block of memory created beginning at the destination address may
overlap the memory block defined by the <StartAddress> and <EndAddress>.

One of the uses of the MOVE command might be to copy a program from RAM into
EEPROM memory.

Restrictions

A minimum of one byte may be moved if the <StartAddress> is equal to the <EndAddress>.
The maximum number of bytes that may be moved is 216 - 1. In addition, caution should be
exercised when moving target memory while user code is running. Accidentally modifying
target memory containing program code could lead to program run away.

Example

>move 800 8ff 1000
>

D-BugS08 v1.x.x Reference Guide Page 40 Freescale Semiconductor

February 15, 2007
Copyright 2007 Freescale Semiconductor

NOBR - Remove one/all user breakpoints

Command Line Format

 NOBR [<Address>…]

Parameter Description

<Address> A 16-bit hexadecimal number or simple expression

Command Description

The NOBR command is used to remove one or more of previously entered breakpoints. If the
NOBR command is entered without any arguments, all user breakpoints are removed from
the breakpoint table.

Restrictions

Breakpoints may not be removed with the NOBR command when the ‘R>’ prompt is being
displayed.

Example

>br 800 810 820 830
Breakpoints: 0800 0810 0820 0830

>nobr 810 820
Breakpoints: 0800 0830

>nobr
All Breakpoints Removed

>

D-BugS08 v1.x.x Reference Guide Page 41 Freescale Semiconductor

February 15, 2007
Copyright 2007 Freescale Semiconductor

RD - Display CPU08 Register Contents

Command Line Format

 RD

Parameter Description

No parameters are required. Any parameters on the command line will be ignored.

Command Description

The Register Display command is used to display the CPU08’s registers. The registers are
displayed in the same format used when a breakpoint is encountered.

Restrictions

The CPU registers may not be displayed when the ‘R>’ prompt is being displayed.

Example

S>rd

 PC SP HX A CCR = V--H INZC
10A2 00FF 0000 01 0110 1000
10A2 1000 BSET 0,$00
S>

D-BugS08 v1.x.x Reference Guide Page 42 Freescale Semiconductor

February 15, 2007
Copyright 2007 Freescale Semiconductor

RESET - Reset the target system MCU

Command Line Format

 RESET

Parameter Description

No parameters are required. Any parameters on the command line will be ignored.

Command Description

The RESET command is used to reset the target system processor and place it in active
background mode. For S08 devices having a dedicated reset pin, D-BugS08 forces the target
MCU into active background mode by asserting the Reset and BKGD pins and then releasing
the reset pin while keeping the BKGD pin asserted. Communication with the target is then
attempted.

For S08 devices not having a dedicated reset pin, D-BugS08 writes a value to the target
MCU’s SBDFR register to force a system reset. Immediately after the BDM write operation,
the BKGD pin is driven low so that the target device enters active background mode.

With the exception of the program counter (PC), the target processor’s registers are
initialized with the values stored in D-BugS08’s Customization Data area. The PC is
initialized with the contents of the target processor’s reset vector, memory locations $FFFE
and $FFFF.

Restrictions

None.

Example

S>reset
Target Processor Has Been Reset
S>g 4000
R>reset
Target Processor Has Been Reset
S>

D-BugS08 v1.x.x Reference Guide Page 43 Freescale Semiconductor

February 15, 2007
Copyright 2007 Freescale Semiconductor

RM - Interactively Modify CPU08 Register Contents

Command Line Format

 RM

Parameter Description

No parameters are required. Any parameters on the command line will be ignored.

Command Description

The register modify command is used to examine and/or modify the contents of the CPU08's
registers in an interactive manner. As each register and its contents is displayed, D-BugS08
allows the user to enter a new value for the register in hexadecimal. If modification of the
displayed register is not desired, entering a carriage return causes the next CPU08 register
and its contents to be displayed on the next line. When the last of the CPU08's registers has
been examined and/or modified, the RM command will redisplay the first register giving the
user an opportunity to make additional modifications. Typing a period (.) as the first non
space character on the line will exit the interactive mode of the register modify command and
return to the D-BugS08 prompt.

The registers are displayed in the following order, one register per line: PC, SP, HX, A, CCR.

Restrictions

The CPU registers may not be modified when the ‘R>’ prompt is being displayed.

Example

>RM
PC=1206 1200
SP=17FF <CR>
HX=1000 1004
A=27 <CR>
CCR=68 69
PC=1200 .
>

D-BugS08 v1.x.x Reference Guide Page 44 Freescale Semiconductor

February 15, 2007
Copyright 2007 Freescale Semiconductor

SO - Step Over Subroutine Calls

Command Line Format

 SO

Parameter Description

No parameters are required. Any parameters on the command line are ignored.

Command Description

When tracing through code it is often unnecessary to trace through subroutines that are
known to be bug free. The SO command is similar to the Trace command (T) except that
subroutine calls (BSR, JSR) are traced as a single instruction. When the SO command
encounters one of the subroutine call instructions, it places a temporary breakpoint at the
instruction following the BSR or JSR. It then issues a Go command, executing the subroutine
at full speed. All other instructions are executed the same as if the Trace command were
used.

If the subroutine requires more than a handful of cycles to execute, D-BugS08 will display its
R> prompt indicating the target is running. When the subroutine returns, the temporary
breakpoint is removed, the CPU08’s register contents are displayed and the next instruction
to be executed is displayed.

Restrictions

None.

Example

S>pc 100

 PC SP HX A CCR = V--H INZC
0100 00FF 0000 00 0110 1000
0100 A6FF LDA #$FF
S>so

 PC SP HX A CCR = V--H INZC
0102 00FF 0000 FF 0110 1100
0102 CD0200 JSR $0200
S>so

 PC SP HX A CCR = V--H INZC
0105 00FF 0000 FE 0110 1100
0105 26FB BNE $0102
S>

D-BugS08 v1.x.x Reference Guide Page 45 Freescale Semiconductor

February 15, 2007
Copyright 2007 Freescale Semiconductor

STOP - Stop Execution of user code in the target MCU

Command Line Format

 STOP

Parameter Description

No parameters are required. Any parameters on the command line are ignored.

Command Description

The STOP command is used to halt target program execution and place the target processor
in active background debug mode.

Restrictions

If the STOP command is entered while the ‘S>’ prompt is displayed, an error message is
displayed and command execution will be terminated.

Example

S>asm 1080
1080 A603 LDA #$03 >
1082 C71802 STA $1802 >
1085 C6FFBE LDA $FFBE >
1088 B74E STA $4E >
108A A608 LDA #$08 >
108C B748 STA $48 >
108E A670 LDA #$70 >
1090 B749 STA $49 >
1092 B64A LDA $4A >
1094 A448 AND #$48 >
1096 A148 CMP #$48 >
1098 26F8 BNE $1092 >.
S>g
R>stop
Target Processor Has Been Stopped

 PC SP HX A CCR = V--H INZC
10A0 00FF 0000 01 0110 1000
10A0 9D NOP
S>

D-BugS08 v1.x.x Reference Guide Page 46 Freescale Semiconductor

February 15, 2007
Copyright 2007 Freescale Semiconductor

T - Trace (Execute) CPU08 Instruction(s)

Command Line Format

 T [<Count>]

Parameter Description

<Count> An 8-bit decimal number in the range 1..255

Command Description

The Trace command is used to execute one or more user program instructions beginning at
the current Program Counter (PC) location. As each program instruction is executed, the
CPU08’s register contents are displayed and the next instruction to be executed is displayed.
A single instruction may be executed by entering the trace command followed immediately
by a carriage return.

Restrictions

None.

Example

S>t

 PC SP HX A CCR = V--H INZC
1082 00FF 0000 03 0110 1000
1082 C71802 STA $1802

S>t

 PC SP HX A CCR = V--H INZC
1085 00FF 0000 03 0110 1000
1085 C6FFBE LDA $FFBE

S>t

 PC SP HX A CCR = V--H INZC
1088 00FF 0000 64 0110 1000
1088 B74E STA $4E

S>t

 PC SP HX A CCR = V--H INZC
108A 00FF 0000 64 0110 1000
108A A608 LDA #$08

S>

D-BugS08 v1.x.x Reference Guide Page 47 Freescale Semiconductor

February 15, 2007
Copyright 2007 Freescale Semiconductor

TCONFIG - Configure target system

Command Line Format

 TCONFIG <Address>=<Data> [<Address>=<Data>] [DLY=<mSDelay>]
 TCONFIG NONE
 TCONFIG

Parameter Description

<Address> A 16-bit hexadecimal number.
<Data> An 8-bit hexadecimal number.
<mSDelay> A 16-bit unsigned decimal number.

Command Description

Some target systems may contain external circuitry such as voltage regulators or peripherals
that need to be enabled before performing in–circuit programming operations. The
TCONFIG command can be used to specify up to eight one byte values that will be written to
the target memory just before the execution of the FBULK and FLOAD commands.

To allow time for the target external circuitry to stabilize after it is enabled, an optional delay
between 1 and 65535 mS may be specified. The specified delay does not have to appear as
the last parameter on the command line, however, a delay may not be specified without also
supplying values to be written to the target memory.

Entering the TCONFIG command without supplying any parameters reports the address, data
and delay time previously specified using the TCONFIG command. If no address, data and
delay time have been specified, a message is displayed indicating no data has previously
been supplied.

To disable the function of the TCONFIG command, a single parameter ‘NONE’ is entered on
the command line. When a new target device is specified using the DEVICE command, any
previously entered address, data and delay information is discarded.

Restrictions

None.

Example

>tconfig 1=01 3=fe dly=20
>tconfig
$0001=$01 $0003=$FE Delay=20 mS
>

D-BugS08 v1.x.x Reference Guide Page 48 Freescale Semiconductor

February 15, 2007
Copyright 2007 Freescale Semiconductor

UPLOAD - Display Memory In S-Record Format

Command Line Format

 UPLOAD <StartAddress> <EndAddress> [;<SRecSize>]

Parameter Description

<StartAddress> A 32-bit hexadecimal number
<EndAddress> A 32-bit hexadecimal number
[;<SRecSize>] Decimal number specifying the S-Record data field length.

Command Description

The UPLOAD command is used to display the contents of memory in Motorola S-Record
format. In addition to displaying the specified range of memory, the UPLOAD command
also outputs an S9 end-of-file record. The output of this command may be captured by a
terminal program and saved to a disk file.

The upload command accepts a 16-bit <StartAddress> or <EndAddress> parameter in the
range $0000 through $FFFF. This allows any program or data visible in the 64K memory
map to be displayed in S-Record format.

The optional <SRecSize> parameter may be used to specify the length of the S-Record data
field. Permissible values for <SRecSize> range from 16 through 64. If the <SRecSize>
parameter is not specified, the default S-Record length is 32.

Restrictions

None.

Example

>upload 400 4ff
S123040000F0000843FC0000F50F379F37BF43FCF50F27FA757F177AFA047504177AFA21C5
S123042037B500FF37FAFB0437B5400037FAFB061735FB0037B500C137FAFA003715379C01
S1230440F50F379D37BC012C37BD400085009A003C023D02377C0140B6EE7A0F400037B583
S1230460000337FAFA4C37FAFA5037FAFA5437B5502037FAFA4E37B5302037FAFA5237B58A
S1230480682037FAFA5637BD014037BC000095008A003C023D02377D0172B6EE37BD017259
S12304A037BC020095008A003C023D02377D018EB6EE27F937B0F50F379C37BC00CE27F901
S12304C000FC27F9104C27F90E68378000BE0A0D442D42756731362056312E3033202D20E3
S12304E04465627567204D6F6E69746F7220466F7220546865204D363848433136204661ED
S9030000FC
>

D-BugS08 v1.x.x Reference Guide Page 49 Freescale Semiconductor

February 15, 2007
Copyright 2007 Freescale Semiconductor

USEHBR - Use EVB/Target Hardware Breakpoints

Command Line Format

 USEHBR [ON | OFF]

Parameter Description

[ON | OFF] The ASCII string ‘ON’ or ‘OFF’ in upper, lower or mixed case

Command Description

Entering the USEHBR command causes D-BugS08 to use the hardware breakpoint capability
of the target microcontroller. Using hardware breakpoints allows up to three, program only
breakpoints to be set in Flash or other nonvolatile memory. By default, D-BugS08 uses the
hardware breakpoint capability of the target MCU. To utilize D-BugS08’s 10 software
breakpoints, the USEHBR command should be entered with the ‘OFF’ parameter on the
command line.

Entering the USEHBR command will reinitialize the breakpoint table causing any previously
set breakpoints to be removed from the breakpoint table.

Restrictions

The USEHBR command cannot be issued when the ‘R>’ prompt is being displayed
indicating that the target system is running a user program.

Example

S>usehbr
Using Hardware Breakpoints
S>br 810 835 8A4
Breakpoints: 0810 0835 08A4
S>br 957
Breakpoint Table Full
S>

D-BugS08 v1.x.x Reference Guide Page 50 Freescale Semiconductor

February 15, 2007
Copyright 2007 Freescale Semiconductor

VER - Display the D-BugS08 Version Number

Command Line Format

 VER

Parameter Description

No parameters are required. Any parameters on the command line are ignored.

Command Description

The VER command that displays the current version of D-BugS08. This allows high level
debuggers to determine what version of D-BugS08 is running so they know what features
they can be utilized.

Restrictions

None.

Example

S>ver
1.0.0b1
S>

D-BugS08 v1.x.x Reference Guide Page 51 Freescale Semiconductor

February 15, 2007
Copyright 2007 Freescale Semiconductor

VERF - Compare S-Record File To The Contents of Memory

Command Line Format

 VERF [<AddressOffset>]

Parameter Description

<AddressOffset> A 16-bit hexadecimal number

Command Description

The VERF command is used to compare the data contained in an S-Record object file to the
contents of target memory. The address offset, if supplied, is added to the load address of
each S-Record before an S-Record’s data bytes are compared to the contents of memory.
Providing an address offset other than zero allows the S-Record’s object code or data to be
compared against memory other than that for which the S-Record was assembled.

The verify command accepts only S1 S-Records. This allows S-Record data to be verified
against any memory locations visible in the 64K memory map.

During the verification process, the ASCII characters ‘|’, ‘/’, ‘-’ and ‘\’ are sent one at a time
to the control console to indicate that the verify process is proceeding. Before each character
is sent, an ASCII backspace character is sent to the console so that the previously sent
progress character is effectively erased from the screen. The displayed effect is a rotating bar.
When an S-Record file has been successfully verified, D-BugS08 will issue its prompt.

If the contents of target memory does not match the corresponding data in the S–Record, an
informational line is displayed on the console showing the S-Record address, the S-Record
data and the data at the corresponding target memory location. Note that the displayed S-
Record address includes the optional address offset that may have been entered on the
command line.

The VERF command is terminated when D-BugS08 receives an ‘S9’ end of file record. If the
object file being loaded does not contain an ‘S9’ record, D–BugS08 will not return its prompt
and will continue to wait for the end of file record. Pressing system Reset will return D–
BugS08 to its command line prompt.

Restrictions

None.

D-BugS08 v1.x.x Reference Guide Page 52 Freescale Semiconductor

February 15, 2007
Copyright 2007 Freescale Semiconductor

Example

S>verf
S-Rec Address S-Rec Data Target Address Target Data
$00200 $00 $0200 $C6
$002C3 $00 $02C3 $87
$00397 $00 $0397 $EB
$005BA $00 $05BA $A2
$007DF $00 $07DF $61

S>

D-BugS08 v1.x.x Reference Guide Page 53 Freescale Semiconductor

February 15, 2007
Copyright 2007 Freescale Semiconductor

<RegisterName> - Modify a CPU08 Register Value

Command Line Format

 <RegisterName> <RegisterValue>

Parameter Description

Where <RegisterName> is one of the following CPU08 register names:

 Register Name Description Legal Range
 PC Program Counter $0..$FFFF
 SP Stack Pointer $0..$FFFF
 HX HX-Index Register $0..$FFFF
 A A Accumulator $0..$FF
 CCR Condition Code Register $0..$FF

Each of the fields in the CCR may be modified by using the following field Names:

 CCR Bit Name Description Legal Range
 H Half Carry 0..1
 N Negative Flag 0..1
 Z Zero Flag 0..1
 V Twos Complement Overflow Flag 0..1
 C Carry Flag 0..1
 I IRQ Interrupt Mask 0..1

For each of the CPU register names, <RegisterValue> may be a hexadecimal number or a
simple expression. For the CCR bit names only a value of zero or one may be supplied for
the <RegisterValue> parameter.

Command Description

This set of “commands” uses the CPU08 register names as individual commands to allow
changing the contents of individual registers. Each register name or Condition Code Register
bit name is entered on the command line followed by a space, then followed by the new
register or bit value. The successful alteration of a CPU register or CCR will cause the
CPU08’s register contents to be displayed.

Restrictions

These commands may not be used when the ‘R>’ is being displayed.

If a value outside the range for a given register is entered, an error message is displayed and
command execution is terminated leaving the register contents unaltered.

D-BugS08 v1.x.x Reference Guide Page 54 Freescale Semiconductor

February 15, 2007
Copyright 2007 Freescale Semiconductor

Example

S>pc 1080

 PC SP HX A CCR = V--H INZC
1080 00FF 0000 00 0110 1000
1080 A603 LDA #$03
S>hx 1234

 PC SP HX A CCR = V--H INZC
1080 00FF 1234 00 0110 1000
1080 A603 LDA #$03
S>c 1

 PC SP HX A CCR = V--H INZC
1080 00FF 1234 00 0110 1001
1080 A603 LDA #$03
S>v 1

 PC SP HX A CCR = V--H INZC
1080 00FF 1234 00 1110 1001
1080 A603 LDA #$03
S>

D-BugS08 v1.x.x Reference Guide Page 55 Freescale Semiconductor

February 15, 2007
Copyright 2007 Freescale Semiconductor

Appendix A

Adapting D-BugS08 to Use Alternate Crystal Frequencies

As supplied, D-BugS08 v1.x.x is configured to operate with an 8.0 or 16.0 MHz crystal or
oscillator. The 8.0 or 16.0 MHz reference frequency is used by the PLL to generate a bus
frequency of 24.0 MHz. Using a 24.0 MHz bus speed (rather than the DP256’s rated speed of 25
MHz) allows communication with a host terminal program at 115,200 baud with very little speed
mismatch (approximately 0.16%). To use D-BugS08 with a crystal or oscillator frequency other
than 8.0 or 16.0 MHz, one area of D-BugS08 and the bootloader need to be modified.

Bootloader Modifications

Even though the bootloader is separate from D-BugS08, it requires modification so that the
FCLKDIV, ECLKDIV and PLL registers can be programmed with the proper values when the
bootloader is used. Figure B-1 shows an excerpted portion of the supplied bootloader source
code used to calculate the register constants. OscClk is the crystal or oscillator frequency in
MHz and should be changed to the desired value. In addition, depending on the value used for
OscClk, a change may have to be made to the RefClk value to obtain a 24 MHz bus
frequency. The equation used to calculate the value for REFDVVal and SYNRVal MUST
produce integer results. The RefClk value must always be less than or equal to the OscClk
value.

Figure B-1, Bootloader FCLKDIV, ECLKDIV and PLL Register Values

For example, if a 16 MHz crystal or oscillator were used, the only required change would be to
the value of OscClk because OscClk would be an integer multiple of RefClock and
Eclock is an integer multiple of RefClock. If, however, a 12.0 MHz crystal or oscillator
were used, both the OscClk and RefClock values would need to be changes to 12000000
because the E-clock frequency of 24.0 MHz is an even multiple of the OscClk.

As a final example, if a 10 MHz crystal or oscillator were used, the following changes would
have to be made. In this case, because Eclock is not an integer multiple of OscClk, a
reference clock must be generated that is an even multiple of Eclock. A reference clock of 2.0

D-BugS08 v1.x.x Reference Guide Page 56 Freescale Semiconductor

February 15, 2007
Copyright 2007 Freescale Semiconductor

MHz could be multiplied by 12 to obtain a 24 MHz bus clock. Therefore, specifying a
RefClock value of 2000000 will cause the calculation of the proper integer values for both the
FCLKDIV and ECLKDIV registers.

D-BugS08 v1.x.x Reference Guide Page 57 Freescale Semiconductor

February 15, 2007
Copyright 2007 Freescale Semiconductor

D-BugS08 Modifications

The changes required to D-BugS08 are isolated to a single data table residing at a fixed address.
Among other data, this table contains constant values used to initialize the FCLKDIV, ECLKDIV
and PLL registers. The values in the table related to the oscillator clock frequency are all
calculated from the three constants at the beginning of the listing. The values of these three
constants have the same restrictions as the constants described in the previous section.

Figure B-2, D-BugS08 Customization Data

D-BugS08 v1.x.x Reference Guide Page 58 Freescale Semiconductor

February 15, 2007
Copyright 2007 Freescale Semiconductor

Note: While the listing in Figure B-2 shows that the start of the data table must reside in the

upper fixed page at $EEC0, the S-Record load address must be $FEEC0. If the assembler
used to assemble the data table allows addresses greater than 16-bits, the address in the
ORG statement should be changed to $FEEC0. If not, the resulting S-Record file with a
16-bit load address can be converted to have the proper load address using the supplied
SRecCvt utility using the following command line:

 sreccvt -m c0000 fffff 32 -of f0000 <inputfilename>

 The file containing the converted S-Record will be named Out.S19 and reside in the same

directory as the input file.

S2240FEE805CD1487A483FE35D6B5A67A3E342EA56E32FEA17EA0A6A0F6A1AECCB6A246A3B86
S2240FEEA0963196CFFF2E
S2240FEEC09000000000000000003C00016E36000002280000009C04000C00EF021770FFFF61
S2240FEF002002205FCF400086555A3F415A3F86005A3CF6EECF5B35F6EED05B34A7A7A7A7A1
S2240FEF204F3708FC4C3980F6EED17B0110FCEED25A11A786115A10A7FCEED68A015A12A719

Figure B-3, S-Record Line Containing Customization Data

Figure B-4, Line Containing Customization Data Removed

Figure B-5, Replacement of S-Record Header, Byte Count and Load Address

After making the necessary changes and successfully assembling the source file, a single line in
the D-BugS08 S-Record file must be replaced. Using a text editor search for the S-Record line
that begins with “S2240FEEC0” as shown in Figure B-3. Remove this line from the file leaving
a space for the S-Record containing the newly generated customization data as shown in Figure
B-4. Finally, paste in the S-Record containing the new customization data as shown in Figure B-
5 and save the result.

D-BugS08 v1.x.x Reference Guide Page 59 Freescale Semiconductor

February 15, 2007
Copyright 2007 Freescale Semiconductor

Note: The new S-Record shown in Figure B-5 was generated directly by an assembler. An S-
Record generated by the SRecCvt program will be the same length as the other S-records
in the file with the last two data bytes in the being $FF.

D-BugS08 v1.x.x Reference Guide Page 60 Freescale Semiconductor

February 15, 2007
Copyright 2007 Freescale Semiconductor

Appendix B

BDM Debugger

The BDM debugger contained within D-BugS08 is intended to be used by tool developers or
factory engineers when evaluating new silicon or debugging BDM communication problems,
however, it may also be useful to end customers. Using D-BugS08’s low level BDM driver
routines, the BDM debugger allows individual BDM commands to be sent to a target device
directly from the command line. Unlike D-BugS08, which maintains constant communications
with a connected target, no BDM communication occurs other than during the execution of a
command. Also note that the BDM debugger does not perform any checks to ensure a target is
connected before executing a command.

The BDM debugger can be entered either from D-BugS08’s command line (see the BDMDB
command description) or from the startup menu (option 4) if communication cannot be
established with a target. When entering the BDM debugger from the D-BugS08 command line,
the timing of the BDM driver routines is the same as the timing established by D-BugS08. If the
BDM debugger is entered by selecting option four of the startup menu, the timing of the BDM
driver routines can be establish by using the BDM debugger SYNC command.

The following list summarizes the BDM debugger command set. Each command’s function and
command line syntax are described in detail.

• ACKDI - Disable ACK Handshake protocol.
• ACKEN - Enable ACK Handshake protocol.
• A - Read or write the CPU A accumulator.
• BKGD - Place target in active background mode.
• CCR - Read or write the CPU Condition Code Register
• EXIT - Exit the BDM debugger and (re)enter D-BugS08.
• G - Exit active background, begin target execution at the current PC.
• HX - Read or write the target HX index register.
• PC - Read or write the target Program Counter.
• RB - Read a byte from target memory.
• RBR - Read BDC Breakpoint Register.
• RBS - Read Byte With Status.
• RESET - Reset target in special single chip mode.
• RL - Read Last, read byte from previously read memory location with status
• RNX - Pre-increment target HX-index register by 1 and read the byte pointed to by

HX.
• RNXS - Pre-increment target HX-index register by 1 and read the byte pointed to by

HX, With Status.
• RS - Read BDC Status/Control register.
• SP - Read or write the target Stack pointer.
• SYNC - Measure target BDC speed and configure BDM drivers.
• T - Execute a single instruction and return to active background.

D-BugS08 v1.x.x Reference Guide Page 61 Freescale Semiconductor

February 15, 2007
Copyright 2007 Freescale Semiconductor

• TG - Enable instruction tagging and begin target execution at the current PC.
• WB - Write a byte to target memory.
• WBR - Write Breakpoint Register.
• WBS - Write byte with status.
• WC - Write BDC Status/Control Register.
• WNX - Pre-increment target HX-index register by 1 and write the byte pointed to by

HX.
• WNXS - Pre-increment target HX-index register by 2 and write the byte pointed to by

HX, With Status.

D-BugS08 v1.x.x Reference Guide Page 62 Freescale Semiconductor

February 15, 2007
Copyright 2007 Freescale Semiconductor

ACKDI - Disable ACK Handshake protocol

Command Line Format

 ACKDI

Parameter Description

 None.

BDM Command Name/Type

ACK_DISABLE ($D6) / Non-intrusive

Command Description

The ACKDI command disables the ACK handshake protocol if it was previously enabled.
An ACK handshake pulse is not issued at the completion of the command.

Example

?ACKDI
?

D-BugS08 v1.x.x Reference Guide Page 63 Freescale Semiconductor

February 15, 2007
Copyright 2007 Freescale Semiconductor

ACKEN - Enable ACK Handshake protocol

Command Line Format

 ACKEN

Parameter Description

 None.

BDM Command Name/Type

ACK_ENABLE ($D5) / Non-intrusive

Command Description

The ACKEN command enables the ACK handshake protocol if it was previously disabled.
An ACK handshake pulse is issued at the completion of the command.

Example

?ACKEN
?

D-BugS08 v1.x.x Reference Guide Page 64 Freescale Semiconductor

February 15, 2007
Copyright 2007 Freescale Semiconductor

A - Read or write the A-accumulator

Command Line Format

 A [<Data8>]

Parameter Description

<Data8> An 18-bit hexadecimal number representing the new value of the A-
accumulator.

BDM Command Name/Type

READ_A ($68) or WRITE_A ($48) / Active Background

Command Description

The A command is used to read or write the value of the target’s A-accumulator. Entering the
A command without the <Data8> parameter causes the current value of the A-accumulator to
be displayed by sending the READ_A BDC command to the target. Supplying the optional
<Data8> parameter results in the value of the target’s A-accumulator being modified by
sending the WRITE_A BDC command.

Example

?A
A: 12
?A 56
?A
A: 56
?

D-BugS08 v1.x.x Reference Guide Page 65 Freescale Semiconductor

February 15, 2007
Copyright 2007 Freescale Semiconductor

BKGD - Place target in active background mode

Command Line Format

 BKGD

Parameter Description

 None.

BDM Command Name/Type

BACKGROUND ($90) / Non-intrusive

Command Description

The BKGD command causes the target device to enter active background if firmware is
enabled (ENBDM = 1). An ACK handshake pulse is issued when the part enters active
background mode if the ACK protocol has been previously enabled.

Example

?BKGD
?

D-BugS08 v1.x.x Reference Guide Page 66 Freescale Semiconductor

February 15, 2007
Copyright 2007 Freescale Semiconductor

CCR - Read or write the Condition Code Register

Command Line Format

 CCR [<Data8>]

Parameter Description

<Data8> An 8-bit hexadecimal number representing the new value of the Condition
Code Register.

BDM Command Name/Type

READ_CCR ($69) or WRITE_CCR ($49) / Active Background

Command Description

The CCR command is used to read or write the value of the target’s Condition Code
Register. Entering the CCR command without the <Data8> parameter causes the current
value of the Condition Code Register to be displayed by sending the READ_CCR BDC
command to the target. Supplying the optional <Data8> parameter results in the value of the
target’s Condition Code Register being modified by sending the WRITE_CCR BDC
command.

Example

?CCR
CCR: 68
?CCR 69
?CCR
CCR: 69
?

D-BugS08 v1.x.x Reference Guide Page 67 Freescale Semiconductor

February 15, 2007
Copyright 2007 Freescale Semiconductor

EXIT - Exit the BDM debugger and (re)enter D-BugS08

Command Line Format

 EXIT

Parameter Description

 None.

BDM Command Name/Type

N/A

Command Description

The EXIT command does not correspond to one of the BDM hardware or software
commands, instead it is used to leave the BDM debugger and return to D-BugS08.

Example

?EXIT
S>

D-BugS08 v1.x.x Reference Guide Page 68 Freescale Semiconductor

February 15, 2007
Copyright 2007 Freescale Semiconductor

G - Exit active background, begin target execution at the current PC

Command Line Format

 G

Parameter Description

 None.

BDM Command Name/Type

GO ($08) / Active Background

Command Description

The G command causes the target device to leave active background and begin program
execution at the instruction pointed to by the current value of the Program Counter. An ACK
handshake pulse is issued when the part leaves active background mode if the ACK protocol
has been previously enabled.

Example

?G
?

D-BugS08 v1.x.x Reference Guide Page 69 Freescale Semiconductor

February 15, 2007
Copyright 2007 Freescale Semiconductor

HX - Read or write the HX index register

Command Line Format

 HX [<Data16>]

Parameter Description

<Data16> A 16-bit hexadecimal number representing the new value of the HX index
register.

BDM Command Name/Type

READ_HX ($6C) or WRITE_HX ($4C) / Active Background

Command Description

The HX command is used to read or write the value of the target’s HX index register.
Entering the command without the <Data16> parameter causes the current value of the HX
index register to be displayed by sending the READ_HX BDM command to the target.
Supplying the optional <Data16> parameter results in the value of the target’s HX index
register being modified by sending the WRITE_HX BDM command.

Example

?HX
HX: C05A
?HX 5678
?HX
HX: 5678
?

D-BugS08 v1.x.x Reference Guide Page 70 Freescale Semiconductor

February 15, 2007
Copyright 2007 Freescale Semiconductor

PC - Read or write the Program Counter

Command Line Format

 PC [<Data16>]

Parameter Description

<Data16> A 16-bit hexadecimal number representing the new value of the Program
Counter.

BDM Command Name/Type

READ_PC ($6B) or WRITE_PC ($4B) / Active Background

Command Description

The PC command is used to read or write the value of the target’s Program Counter. Entering
the PC command without the <Data16> parameter causes the current value of the Program
Counter to be displayed by sending the READ_PC BDM command to the target. Supplying
the optional <Data16> parameter results in the modification of the target’s Program Counter
by sending the WRITE_PC BDM command.

Example

?PC
PC: C13A
?PC f000
?PC
PC: F000
?

D-BugS08 v1.x.x Reference Guide Page 71 Freescale Semiconductor

February 15, 2007
Copyright 2007 Freescale Semiconductor

RB - Read a byte from target memory

Command Line Format

 RB <Address16>

Parameter Description

<Address16> A 16-bit hexadecimal number representing the address at which to read a
byte of data.

BDM Command Name/Type

READ_BYTE ($E0) / Non-intrusive

Command Description

The RB command is used to read a byte of data from the target’s memory. Because this is a
Non-intrusive command, it may be executed even if the target is not in active background
mode. If handshaking has been enabled, an ACK handshake pulse is issued when the data has
been read from memory.

Example

?rb c000
C000: CF
?

D-BugS08 v1.x.x Reference Guide Page 72 Freescale Semiconductor

February 15, 2007
Copyright 2007 Freescale Semiconductor

RBR - Read BDC Breakpoint Register

Command Line Format

 RBR

Parameter Description

None.

BDM Command Name/Type

READ_BKPT ($E2) / Non-intrusive

Command Description

The RBR command is used to read the contents of the BDC breakpoint register. Because this
is a Non-intrusive command, it may be executed even if the target is not in active background
mode. For enhanced BDM modules, if handshaking has been enabled, an ACK handshake
pulse is issued when the data has been read from memory.

Example

?rbr
Breakpoint: 180A
?

D-BugS08 v1.x.x Reference Guide Page 73 Freescale Semiconductor

February 15, 2007
Copyright 2007 Freescale Semiconductor

RBS - Read a byte from target memory and return BDC status Register

Command Line Format

 RBS <Address16>

Parameter Description

<Address16> A 16-bit hexadecimal number representing the address at which to read a
byte of data.

BDM Command Name/Type

READ_BYTE_WS ($E1) / Non-intrusive

Command Description

The RBS command is used to read a byte of data from the target’s memory. In addition to
reading the byte of data from the target address location, the contents of the BDC
Status/Control register is returned. Because this is a Non-intrusive command, it may be
executed even if the target is not in active background mode. If handshaking has been
enabled, an ACK handshake pulse is issued when the data has been read from memory.

Example

?rbs 180a
180A: 00 Status: 80
?

D-BugS08 v1.x.x Reference Guide Page 74 Freescale Semiconductor

February 15, 2007
Copyright 2007 Freescale Semiconductor

RESET - Reset target in special single chip mode

Command Line Format

 RESET

Parameter Description

 None.

BDM Command Name/Type

N/A

Command Description

The RESET command does not correspond to one of the BDM Non-intrusive or Active
background commands, instead it is used to reset the target MCU, placing it in Special
Single-chip mode.

Example

?reset
?

D-BugS08 v1.x.x Reference Guide Page 75 Freescale Semiconductor

February 15, 2007
Copyright 2007 Freescale Semiconductor

RL - Read Last, read byte from previously read memory location with status

Command Line Format

 RL

Parameter Description

None.

BDM Command Name/Type

READ_LAST ($E8) / Non-intrusive

Command Description

The RL command is used to read a byte of data from the same address as the location of the
previous read. Note that this includes READ_NEXT and READ_NEXT_WS commands. In
addition to reading the byte of data from the target location, the contents of the BDC
Status/Control register is returned. Because this is a Non-intrusive command, it may be
executed even if the target is not in active background mode. If handshaking has been
enabled, an ACK handshake pulse is issued when the data has been read from memory.

Example

?rb 180a
180A: 00
?rl
Data: 00 Status: 80
?

D-BugS08 v1.x.x Reference Guide Page 76 Freescale Semiconductor

February 15, 2007
Copyright 2007 Freescale Semiconductor

RNX - Pre-increment HX-index register by 1, read the byte pointed to by HX

Command Line Format

 RNX

Parameter Description

 None.

BDM Command Name/Type

READ_NEXT ($70) / Active Background

Command Description

The RNX command reads a byte of data from target memory. Before the read is performed,
the target’s HX index register is incremented by one. If handshaking has been enabled, an
ACK handshake pulse is issued when the data has been read from memory.

Example

?rnx
[+X]: C9
?

D-BugS08 v1.x.x Reference Guide Page 77 Freescale Semiconductor

February 15, 2007
Copyright 2007 Freescale Semiconductor

RNXS - Pre-increment HX-index register by 1, read the byte pointed to by HX & return

Status

Command Line Format

 RNXS

Parameter Description

 None.

BDM Command Name/Type

READ_NEXT_WS ($71) / Active Background

Command Description

The RNXS command reads a byte of data from target memory. Before the read is performed,
the target’s HX index register is incremented by one. In addition to reading the byte of data
from the target address location, the contents of the BDC Status/Control register is returned.
If handshaking has been enabled, an ACK handshake pulse is issued when the data has been
read from memory.

Example

?hx
HX: 1084
?rnxs
[+X]: C6 Status: C8
?

D-BugS08 v1.x.x Reference Guide Page 78 Freescale Semiconductor

February 15, 2007
Copyright 2007 Freescale Semiconductor

RS - Read the BDC Status/Control register

Command Line Format

 RS

Parameter Description

 None.

BDM Command Name/Type

READ_STATUS ($E4) / Non-intrusive

Command Description

The RS command reads the BDC Status/Control register.

Example

?rs
Status: C8
?

D-BugS08 v1.x.x Reference Guide Page 79 Freescale Semiconductor

February 15, 2007
Copyright 2007 Freescale Semiconductor

SP - Read or write the Stack Pointer

Command Line Format

 SP [<Data16>]

Parameter Description

<Data16> A 16-bit hexadecimal number representing the new value of the Stack
Pointer.

BDM Command Name/Type

READ_SP ($6F) or WRITE_SP ($4F) / Active Background

Command Description

The SP command is used to read or write the value of the target’s Stack Pointer. Entering the
SP command without the <Data16> parameter causes the current value of the Stack Pointer
to be displayed by sending the READ_SP BDM command to the target. Supplying the
optional <Data16> parameter results in the modification of the target’s Stack Pointer by
sending the WRITE_SP BDM command.

Example

?SP
SP: 3FDC
?SP 4000
?SP
SP: 4000
?

D-BugS08 v1.x.x Reference Guide Page 80 Freescale Semiconductor

February 15, 2007
Copyright 2007 Freescale Semiconductor

SYNC - Measure BDC clock speed and reinitialize the BDM drivers

Command Line Format

 SYNC

Parameter Description

 None.

BDM Command Name/Type

N/A / Non-intrusive

Command Description

The SYNC command does not correspond to an actual BDC serial command, instead it uses
the SYNC protocol to measure the operating frequency of the BDC module. After obtaining
the BDC module operating frequency, the BDM software drivers are initialized using the
measured frequency. Note that if the CLKSW bit in the BDC Status/Control register is set,
the BDC module’s input clock frequency is the same as the target’s bus clock. Otherwise, the
BDC module will be clocked by the 8.0 MHz nominal Self Clock mode clock.

Example

?rs
Status: 88
?sync
BDC Speed: 20000 KHz
?wc 80
?rs
Status: FF
?sync
BDC Speed: 7679 KHz
?rs
Status: 80
?

D-BugS08 v1.x.x Reference Guide Page 81 Freescale Semiconductor

February 15, 2007
Copyright 2007 Freescale Semiconductor

T - Execute a single instruction at the current PC, return to active background

Command Line Format

 T

Parameter Description

 None.

BDM Command Name/Type

TRACE1 ($10) / Active Background

Command Description

Execute one instruction at the current PC and return to active background mode. An ACK
handshake pulse is issued when the part returns to active background mode if the ACK
protocol has been previously enabled.

Example

?t
?

D-BugS08 v1.x.x Reference Guide Page 82 Freescale Semiconductor

February 15, 2007
Copyright 2007 Freescale Semiconductor

TG - Enable instruction tagging, begin execution at the current PC

Command Line Format

 TG

Parameter Description

 None.

BDM Command Name/Type

TAGGO ($18) / Active Background

Command Description

The TG command causes the target device to, enable instruction tagging, leave active
background and begin program execution at the instruction pointed to by the current value of
the Program Counter. Note that because the S08 devices do not have external instruction
tagging capability, the TAGGO BDC command operates the same as the GO command. An
ACK handshake pulse is issued when the part returns to active background mode if the ACK
protocol has been previously enabled.

Example

?TG
?

D-BugS08 v1.x.x Reference Guide Page 83 Freescale Semiconductor

February 15, 2007
Copyright 2007 Freescale Semiconductor

WB - Write a byte to target memory

Command Line Format

 WB <Address16> <Data8>

Parameter Description

<Address16> A 16-bit hexadecimal number representing the address at which to write a
byte of data.

<Data8> An 8-bit hexadecimal number representing the data to be written to
<Address16>

BDM Command Name/Type

WRITE_BYTE ($C0) / Non-intrusive

Command Description

The WB command is used to write a byte of data to the target’s memory. Because this is a
Non-intrusive command, it may be executed even if the target is not in active background
mode. If handshaking has been enabled, an ACK handshake pulse is issued when the data has
been written to memory, indicating that the next BDM command may be sent.

Example

?wb 1000 16
?

D-BugS08 v1.x.x Reference Guide Page 84 Freescale Semiconductor

February 15, 2007
Copyright 2007 Freescale Semiconductor

WBR - Write a word to the BDC breakpoint register

Command Line Format

 WBR <Data16>

Parameter Description

<Data16> An 16-bit hexadecimal number representing the data to be written to the
BDC breakpoint register.

BDM Command Name/Type

WRITE_BKPT ($C2) / Non-intrusive

Command Description

The WBR command is used to write a word of data to the BDC’s breakpoint register.

Example

?wbr 1087
?

D-BugS08 v1.x.x Reference Guide Page 85 Freescale Semiconductor

February 15, 2007
Copyright 2007 Freescale Semiconductor

WBS - Write a byte to target memory with status

Command Line Format

 WBS <Address16> <Data8>

Parameter Description

<Address16> A 16-bit hexadecimal number representing the address at which to write a
byte of data.

<Data8> An 8-bit hexadecimal number representing the data to be written to
<Address16>

BDM Command Name/Type

WRITE_BYTE ($C1) / Non-intrusive

Command Description

The WB command is used to write a byte of data to the target’s memory. In addition to
writing the byte of data to the target address, the contents of the BDC Status/Control register
is returned. Because this is a Non-intrusive command, it may be executed even if the target is
not in active background mode. If handshaking has been enabled, an ACK handshake pulse is
issued when the data has been written to memory, indicating that the next BDM command
may be sent.

Example

?wbs 80 55
Status: FF
?sync
BDC Speed: 7660 KHz
?wbs 80 55
Status: 00
?

D-BugS08 v1.x.x Reference Guide Page 86 Freescale Semiconductor

February 15, 2007
Copyright 2007 Freescale Semiconductor

WC - Write the BDC Status/Control Register

Command Line Format

 WC <Data8>

Parameter Description

<Data8> An 8-bit hexadecimal number representing the data to be written to the
BDC Status/Control register

BDM Command Name/Type

WRITE_CONTROL ($C4) / Non-intrusive

Command Description

The WC command is used to write a byte to the BDC Status/Control register. Because this is
a Non-intrusive command, it may be executed even if the target is not in active background
mode.

Example

?wc C8
?

D-BugS08 v1.x.x Reference Guide Page 87 Freescale Semiconductor

February 15, 2007
Copyright 2007 Freescale Semiconductor

WNX - Pre-increment HX-index register by 1, write the byte pointed to by HX

Command Line Format

 WNX <Data8>

Parameter Description

<Data8> An 8-bit hexadecimal number representing the data to be written to the
location pointed to by HX.

BDM Command Name/Type

WRITE_NEXT ($50) / Active Background

Command Description

The WNX command writes a byte of data from target memory. Before the write is
performed, the target’s HX index register is incremented by one. If handshaking has been
enabled, an ACK handshake pulse is issued when the data has been read from memory.

Example

?wnx a5
?

D-BugS08 v1.x.x Reference Guide Page 88 Freescale Semiconductor

February 15, 2007
Copyright 2007 Freescale Semiconductor

WNXS - Pre-increment HX-index register by 1, write the byte pointed to by HX, return

status

Command Line Format

 WNXS <Data8>

Parameter Description

<Data8> An 8-bit hexadecimal number representing the data to be written to the
location pointed to by HX.

BDM Command Name/Type

WRITE_NEXT_WS ($51) / Active Background

Command Description

The WNXS command writes a byte of data from target memory and returns the value of the
BDC Status/Control register. Before the write is performed, the target’s HX index register is
incremented by one. If handshaking has been enabled, an ACK handshake pulse is issued
when the data has been read from memory, indicating the status register may be read.

Example

?wnx a5
?

