
Application Note: Demonstrating CAN with nqBASIC
By Carl Barnes, Technological Arts, Inc.
May 21, 2011

Hardware used:
2 – NC12MAX Modules,
or 2 – NC12DX with 2 external user-added CAN transceivers
2 – School Board, Docking Module, or similar
(2 – LEDs and a 2K Ohm resistor => if not using Docking Module or School Board)

Wire up the circuit shown in the schematic (at the end of this document). Ensure proper
power wiring; otherwise, damage may occur to the electronics.

This example shows how to setup the CAN and SCI functions. One module will send the
message “CANTestx” repeatedly, and at the same time display a message on a terminal
program to show that it was sent. The other module will receive the CAN messages and
display them in a second terminal window to show that they were received.

Create the nqBASIC project using the code listed below, build it, and load it into each of
the two NanoCore12 modules. Attach one of your NanoCore12 setups to each COMport,
power them up, and run them. Don’t forget to connect a cable between the CAN
connectors on each setup. For the Docking Module, be sure to place JB2 and JB3
jumpers in the “1-2” position (i.e. towards the CAN connector, J3). For a short CAN
cable, the termination resistors are not necessary, so JB4 jumpers are optional.

Launch a terminal program (HyperTerminal, TeraTermPro, or similar) on two nearby
PCs. If you have two serial ports, you can use one PC by launching two instances of the
terminal program-- one for each COMport. In any case, setup the COMport settings for
9600 baud, no parity, 8-bit data, and 1 stop bit (no handshaking).

Reset each hardware setup, and you’ll see the menus displayed. In each terminal
window, type the digit “1”. Each setup will begin transmitting its message to the other,
blinking the LED each time the message is sent. See screenshot, below:

/*
CAN Communication Between Two NanoCore12 DX or MAX Modules
==
*/
/*
Use LED on PT0 or PT1 with School Board; PT2 or PT3 with Docking Module
*/
Const LED = PT1Const DEL_1MSEC = 1000

dim S as new SCI (RX_SCI, TX_SCI) //SCI object
dim D as new DIO (LED) //Discrete I/O object on LED on PT1-pin
dim C as new CAN (RXCAN, TXCAN)

//Misc variables
dim done as new BYTE
dim Char as new BYTE //Variable to store received characters
dim Index as new byte

//Variables for CAN
dim canbuffer[16] as new BYTE
dim txbuffer[8] as new BYTE
dim rxbuffer[8] as new BYTE
dim length as new BYTE
dim extended as new BYTE
dim identlow as new WORD
dim identhigh as new WORD

//Note that max delay is MAX_WORD (65536) milliseconds (just over 1 minute).
sub DelayMsec (in word milliseconds)
 while (milliseconds > 0)
 System.Delay (DEL_1MSEC) //Delay 1000 microsecond to make 1
millisecond
 milliseconds = milliseconds - 1
 end while
end sub

/*
** Print the menu over the serial port.
*/
sub PrintMenu ()
 S.SER_Put_char ('\n')
 S.SER_Put_char ('\r')
 S.SER_Put_string ("1) Send 8 byte message")
 S.SER_Put_char ('\n')
 S.SER_Put_char ('\r')
 S.SER_Put_string ("2) Send terminal keystroke ")
end sub

/*
 Process the command received on the serial port
*/
sub ProcessCommand (in byte cmd)
 select cmd
 case '1': //Send test message
 //Init send data for Echo test
 S.SER_Put_char ('\n')
 S.SER_Put_char ('\r')
 S.SER_Put_string ("CANtestx -> ")
 txbuffer[0] = 'C'
 txbuffer[1] = 'A'
 txbuffer[2] = 'N'
 txbuffer[3] = 't'
 txbuffer[4] = 'e'
 txbuffer[5] = 's'
 txbuffer[6] = 't'
 txbuffer[7] = 'x'
 done = 1
 break

 case '2': //Send single keystroke from terminal
 S.SER_Get_char (1, Char)
 S.SER_Put_char ('\n')
 S.SER_Put_char ('\r')
 S.SER_Put_char (Char)
 S.SER_Put_string (" ")
 txbuffer[0] = Char
 txbuffer[1] = 0
 txbuffer[2] = 0
 txbuffer[3] = 0
 txbuffer[4] = 0
 txbuffer[5] = 0
 txbuffer[6] = 0
 txbuffer[7] = 0
 done = 1
 break

 default:
 done = 0
 break
 end select
end sub

sub CANTest ()
 while (FOREVER)
 //Send txbuffer - node ID = 2
 C.CAN_Send (CAN_TX_BUFFER0, CAN_STANDARD, 0, 0x40, 0, 8, txbuffer)

 //Wait for echo
 C.CAN_Receive (canbuffer, length, extended)

 //Turn LED ON
 D.PIN_Out (LED, ON)

 //Get data out of CAN buffer
 CAN.CAN_Rec_data (canbuffer, rxbuffer, 8)

 //Echo received data to terminal
 Index = 0
 do
 Char = rxbuffer[Index]
 S.SER_Put_char (Char)
 Index = Index + 1
 until (Index == length)

 //Turn LED OFF after 500 millisecond delay and repeat
 DelayMsec (500)
 D.PIN_Out (LED, OFF)
 end while
end sub

main
 System.INTS_On ()

 //Setup CAN receive filters (while in initialization mode) BEFORE calling
CAN_Setup!
 C.CAN_Filter (0, 0xFF, 0)
 C.CAN_Filter (1, 0x3F, 0x20)
 C.CAN_Filter (2, 0, 0)
 C.CAN_Filter (3, 0, 0)
 C.CAN_Filter (4, 0, 0)
 C.CAN_Filter (5, 0, 0)
 C.CAN_Filter (6, 0, 0)
 C.CAN_Filter (7, 0, 0)

 //Setup for 125kHz (with 8mHz crystal), and four 16-bit receive filters.
 C.CAN_Setup (0, CAN8MHZ_BAUD_125KHZ, CAN_FILTERS_4_16BIT)

 //Setup UART buffer size and baud rate
 S.SER_Setup (8, BAUD9600)

 //Send banner
 S.SER_Put_char ('\n')
 S.SER_Put_char ('\n')
 S.SER_Put_char ('\r')
 S.SER_Put_string ("CAN Send test")

 while (FOREVER)
 PrintMenu () //Print menu every time
 S.SER_Get_char (1, Char) //wait for character to be received
 S.SER_Put_char (Char) //echo it back
 ProcessCommand (Char) //check if it is a command
 if (done == 1)
 CANTest ()
 End if
 end while
end main

Schematic Diagram for CAN Demo Hardware Setup
NanoCore12DXC32

NanoCore12DX

VCC

R1
10K

1
2

U1
1 32
2 31
3 30
4 29

28
27

13
14
15 18
16 17

5
6
7
8
9

10
11
12

19
20
21
22
23
24
25
26

TX VIN
RX VSS
DTR RESET*
VSS VDD

PE0
PE1

PM5
PM4
PM3 PM0
PM2 PM1

AN00
AN01
AN02
AN03
AN04
AN05
AN06
AN07

PT0
PT1
PT2
PT3
PT4
PT5
PT6
PT7

32 Pin DIP

U3
PCA82C250 3

2

1
4

5
8

7

6

V
C

C
G

N
D

TXD
RXD

Vref
Rs

CANH

CANL

NanoCore12DX

VCC

32 Pin DIP

U2
132
231
330
429

28
27

13
14
1518
1617

5
6
7
8
9
10
11
12

19
20
21
22
23
24
25
26

TXVIN
RXVSS

DTRRESET*
VSSVDD

PE0
PE1

PM5
PM4
PM3PM0
PM2PM1

AN00
AN01
AN02
AN03
AN04
AN05
AN06
AN07

PT0
PT1
PT2
PT3
PT4
PT5
PT6
PT7

U4
PCA82C2503

2

1
4

5
8

7

6

V
C

C
G

N
D

TXD
RXD

Vref
Rs

CANH

CANL

R2
10K

1
2

Schematic Diagram for CAN Demo Hardware Setup
NanoCore12MAXC32/128

NanoCore12MAX

CANH

40 Pin DIP

NanoCore12MAX

CANL
40 Pin DIP

U2
140
239
338
437

36
35

16
17
1823
1922

7
8
9
10
11
12
13
14

24

5
6

15

2021

25
26
27
28
29
30
31
32
33
34

TXVIN
RXVSS

DTRRESET*
VSSVDD

PE1
PE4

PM5
PM4
PM3PM0
PM2PM1

AN00
AN01
AN02
AN03
AN04
AN05
AN06
AN07

PP0

PE0
PA0

VRH

CANLCANH

PT0
PT1
PT2
PT3
PT4
PT5
PT6
PT7
PB4
PE7

U1
1 40
2 39
3 38
4 37

36
35

16
17
18 23
19 22

7
8
9

10
11
12
13
14

24

5
6

15

20 21

25
26
27
28
29
30
31
32
33
34

TX VIN
RX VSS
DTR RESET*
VSS VDD

PE1
PE4

PM5
PM4
PM3 PM0
PM2 PM1

AN00
AN01
AN02
AN03
AN04
AN05
AN06
AN07

PP0

PE0
PA0

VRH

CANL CANH

PT0
PT1
PT2
PT3
PT4
PT5
PT6
PT7
PB4
PE7

