
NanoCore12 Family

www.nqBASIC.com
www.TechnologicalArts.com

nqBASIC
PROGRAMMING THE PWM OBJECT

BEFORE READING THIS GUIDE . . .

All code used in this document is written in nqBASIC, using the free nqBASIC IDE.

If you are new to nqBASIC, look for documentation, tutorials, and examples on the website
www.nqBASIC.com. Before using this manual, you should already know how to create a project, where
to write your source code, how to compile the code, and how to download it to your NanoCore12
module.

www.nqBASIC.com
2

PURPOSE

If you want to use your NanoCore12 module to control the speed of a motor, vary the brightness
of a light, or generate a variable voltage, the PWM object can do the job very well!

The Pulse Width Modulator (PWM), built into NanoCore12, is a hardware subsystem that is
controlled by the nqBASIC PWM object.

Objectives of this guide:

 Introduce the concept of pulse width modulation
Discuss some uses and applications for a pulse width modulator

 Identify the pulse width modulators (channels) in NanoCore12
Demonstrate how to derive the values needed for the PWM Registers
Provide an example program demonstrating the PWM
Analyze the program source code

WHAT IS PULSE WIDTH MODULATION?
Pulse Width Modulation is the process of controlling (modulating) the pulse width (duty cycle) of a logic
level signal.

Duty cycle is the percentage of one cycle that a logic level signal is high. A cycle is defined as the
smallest part of the waveform that repeats.

Figure 1 shows a logic level waveform with period T. During the period, the signal is high for 50% of
the period and low for the remaining 50% of the period. We say that the signal has a duty cycle of 50%,
and we sometimes call this a "square wave".

T

T
2

T
2

High

Low

GND

5V

FIGURE 1

3
www.nqBASIC.com

T

70%

T

80%

T

100%

5V

GND

5V

GND

5V

GND

FIGURE 2

WHAT IS A PULSE WIDTH MODULATOR USED FOR?
A pulse width modulator is a device that can be programmed to vary a logic level waveform’s
duty cycle. The duty cycle produced can be used to control the amount of voltage or current
applied to a load.

Consider FIGURE 3. The pulse width modulator generates a signal whose duty cycle controls
the power delivered to a motor, M.

M

12v

4.7k
Q1

FIGURE 3

If the duty cycle produced by the PWM is 0%, then transistor Q1 is turned off. Therefore, no
power is delivered to the motor M.

www.nqBASIC.com
4

Figure 2 shows three independent logic level waveforms with duty cycles of 70%, 80%, and
100% respectively. In this case the duty cycle of the waveform is increasing.

Table 1 shows what happens to the power delivered to the motor as the duty cycle increases.

PWM0

PWM1

PWM2

PWM3

PWM4

FIGURE 4

Each channel can be individually programmed to produce a signal with its own duty cycle
without affecting the operation of neighboring PWM channels.

www.nqBASIC.com
5

TABLE 1

In general, the power delivered to a load is proportional to the duty cycle applied to the
circuit. As a result, the PWM can be used for varying light intensity, motor speed, and
average voltage.

THE PWM CHANNELS IN NANOCORE12
In NanoCore12, a PWM is referred to as a channel. For example, a NanoCore12 that can
generate four simultaneous PWM waveforms is said to have four PWM channels (or
PWMs).

NanoCore12DX, Figure 4, has five PWMs.

Duty Cycle (%) Percentage of Time Tran-
sistor Conducts

Average Power Delivered
to Motor (%)

0 0 0

20 20 20

50 50 50

80 80 80

100 100 100

DERIVING THE PULSE WIDTH MODULATED SIGNAL

The pulse width modulated signal, produced by a PWM channel, is derived from the
microcontroller’s bus clock. This is accomplished by programming a series of registers
with values that scale the bus clock down to the desired pulse width modulated frequency.

NOTE FOR ADVANCED USERS: By default, nqBASIC uses the phased-locked loop (PLL)
feature of the microcontroller to boost the bus clock to 24 MHz. If you use the System PLL object
to change the bus clock, it will affect the PWM subsystem.

CALCULATING PWM SETTINGS FOR 8-BIT MODE

Each PWM channel has four programmable PWM variables used to reduce the bus clock to
the desired pulse width modulated frequency. These variables are:

 BUS CLOCK DIV
 SCALED DIV
 PeriodValue

A few things to keep in mind: you want to have the largest period value possible, as this
produces the most accurate PWM duty cyle. Hence, you should use BUS CLOCK DIV and
SCALED DIV to divide down the clock so as to end up with the best possible range for the
period. The following example calculations are based on this approach, of trying to maximize
DutyCycleValue.

The overall formula is this:

PWM Frequency = Bus Clock / BUS CLOCK DIV / (2* SCALED DIV) /PeriodValue

The possible division factors for BUS CLOCK DIV are 1, 2, 4, 8, 16, 32, 64, 128 which in turn are
associated with constant keywords in nqBASIC (refer to Table 2).

www.nqBASIC.com
6

BUS CLOCK DIV Value BUS CLOCK DIV

TIMER_DIV_1 divided by 1

TIMER_DIV_2 divided by 2

TIMER_DIV_4 divided by 4

TIMER_DIV_8 divided by 8

TIMER_DIV_16 divided by16

TIMER_DIV_32 divided by 32

TIMER_DIV_64 divided by 64

TIMER_DIV_128 divided by 128
TABLE 2

The possible values for SCALED DIV are 0 to 255. So, using a value of 50 would further
divide the bus clock by 100, for example.

PeriodValue is the maximum value your DutyCycleValue can be. That's why, the larger it is
the more discrete pulse-widths you'll be able to generate. The maximum value is 255, and this is the
final divisor of the bus clock for the PWM object.

EXAMPLE
PROBLEM:
It is desired to generate a pulse-width modulated signal with a frequency of 10Hz and a duty cycle of
50%. Determine the values for the PWM constants:

 BUS CLOCK DIV

 SCALED DIV

 PeriodValue

SOLUTION:
The bus clock = 24MHz. So we need to reduce 24MHz to 10Hz by programming the various PWM
registers with appropriate values.
STEP 1: PERIODVALUE
Let PeriodValue=250
Bus clock / Period Value = 4MHz/(250) = 16kHZ
The value 250 was selected to give us a nice round figure which can be further reduced by BUS
CLOCK DIV and SCALED DIV.

www.nqBASIC.com
7

 STEP 2: BUS CLOCK DIV

BUS CLOCK DIV = TIMER_DIV_32
(96kHz)/ (16) = 3kHz
3Khz can be easily reduced to 10 Hz by dividing by 300.

STEP 3: SCALED DIV
SCALED DIV = 150
3kHz / (2*150) =10 Hz

A COUPLE OF NOTES BEFORE SHOWING YOU THE CODE . . .

Changing PWM signals at runtime
You can change the values of the DutyCycleValue Register and the PeriodValue Variables
during runtime. Each PWM channel has its own counter. Changes to the period and duty cycle
do not take effect until the counter resets back to 0. Thus there is no signal overlap when the
signal transitions from one frequency to another.

PWM Pin-multiplexing
The microcontroller PWM module normally connects to Port P pins on the microcontroller, by
default. However, on NanoCore12, most PortP pins are not available. Fortunately, the PWM
pins can also be routed to Port T pins, via an internal logic block called a MUX. This re-routing
is done automatically by nqBASIC, so that PP0 through PP4 are connected to PT0 through PT4,
respectively. On the 40-pin module, a sixth PWM channel is available, via PP5.

www.nqBASIC.com
8

FIGURE 5

LISTING 1

//Object declaration
dim PWM1 as new PWM (PP0) //PWM Object associated with PP0

main
//Setup the clocks for PP0, PP1, PP4, PP5 PWM.PWM_Res_PP0145
(TIMER_DIV_16, 50)

//Generate a 50% PWM duty cycle
//PWM Period as 250
//PWM duty as 125
PWM1.PWM_Start(PWM_MAIN_CLK, PWM_NORMAL, 250, 125)

end main

After creating a project and entering the code shown above, set your NanoCore12 module to
LOAD mode, hit reset and then use Build and Load (F6) to download the program to
NanoCore12. After download, switch NanoCore12 to RUN mode and reset it once more. If
you have done everything correctly the LED connected to PT0 should be flashing!

NOTE: If you aren't using a Docking Module or School Board, you should connect an LED to
pin PT0 through a current-limiting resistor to Ground. The anode of the LED goes to
the PT0 pin. Use the data sheet for your NanoCore12 module to identify the pin
number corresponding to PT0.

NanoCore12 R= 1K LED

PT0

FIGURE 6

www.nqBASIC.com
9

The nqBASIC code for our 10Hz 50% duty cycle PWM signal is shown in LISTING 1.

ANALYZING THE SOURCE CODE

Don’t worry if you don’t understand the source code, because now we will analyze it.

dim PWM1 as new PWM (PP0)
Declares a PWM object named PWM1 that is linked to PP0 (i.e. PT0).

PWM.PWM_Res_PP0145 (TIMER_DIV_16, 50)
Sets up the PWM subsystem by initializing the clock, which in turn determines the frequency of the
PWM waveform generated.

PWM1.PWM_Start(PWM_MAIN_CLK, PWM_NORMAL, 250, 125)
Generates the PWM waveform on PWM1, using the main clock, with normal polarity, and with a
duty cycle of 50% (i.e. 125/250 represents 50% on-time).

GENERATING A 16-BIT PWM WAVEFORM

The Period and Duty values can each extend their range up to 65535 to allow more precise values
for duty cycle. The microcontroller does this by concatenating two PWM channels. It is done
transparently by nqBASIC, but it results in the number of available PWM channels being halved
(i.e. only three channels, instead of six).

Below is a simple 16-bit PWM example:

//Object declaration
dim PWM1 as new PWM(PP0) //PWM Object associated with PP0

main
//Setup the clocks for PP0, PP1, PP4, PP5
PWM.PWM_Res_PP0145 (TIMER_DIV_16, 50)
//Generate a 50% PWM duty cycle
//PWM Period as 65000
//PWM duty as 32500
PWM1.PWM_Start_ext(PWM_MAIN_CLK, PWM_NORMAL,65000, 32500)

end main

www.nqBASIC.com
10

SUMMARY

The pulse width modulator is a hardware subsystem which can produce a logic level waveform
whose frequency and duty cycle are programmable

Each PWM channel has four registers which can be programmed to derive a desired
frequency and duty cycle from the bus clock

The method for selecting the values of these registers was described in this guide
The duty cycle and frequency can be programmed to changed during runtime

www.nqBASIC.com
11

