
Syntax Description of nqBASIC Language

 An nqBASIC program has the following structure:

constant, type and variable definitions first (CONST, TYPE and DIM),
functions and tasks next (SUB and TASK)
main-function at end (MAIN).

These definitions may be spread over several source-files (“.nqb” files, but should follow the order as listed above). I.e. after
function-definitions NO variable definitions may follow.

All code is case-INsensitive

Comment started by “ // “. The rest of the line is skipped by the compiler.
Comment between “/*….*/”. Several of these comment sections can be on a single line or the comment section can include
several lines.

Constant number formats recognized are:

decimal: e.g. 255,
hex (preceded by "0x"). e.g. 0xFF
binary (preceded by "0b"). e.g. 0b11111111
character constant (enclosed in “ ‘ “). Single characters or special characters preceded by “\”. See table below.
string constant (enclosed in “ “ “). e.g. “Press a key to continue…”

Special Characters Ascii-value (decimal)

\t Horizontal Tab 9

\n Line Feed 10

\r Carriage Return 13

\v Vertical Tab 11

\\ Back Slash 92

\" Double quote 34

\f Form Feed 12

\b BackSpace 8

\a Alert 7

other without "\" any readable char. e.g. ‘A’ e.g. ‘A’ = ascii 65

The constant identifier is defined with a CONST statement:

Const <ident> = <value>

Example: Const PIN5 = 5

NOTES: constant identifiers cannot start with a numeric digit.

<value> may be another constant definition, but NOT an expression.

Dim <ident> as new <type or class-name> [(<pins>)]
<type> can be: BYTE, WORD
<class> see chapter 6 and appendix A for classes. Classes are followed by “(…)” and may require PIN-numbers. (Pin-numbers are
0-based, where pin-0 is the first “CONTROL PIN” line in the trg-file in your “.ncp” project-file). NOTE: trg-file must support
pin-protocol for that object. (I.e. ASYNC_RX for RX-pin of SCI).

Note all variables are globals (except for function parameters).

Dim <ident>[<constant size>] as new [BYTE | WORD]
As “Dim” but generates array with <constant size> elements. Elements can be accessed by: <ident>[<index>]
The <index> can be a constant, an (indexed array-) variable or an expression. If you use just the identifier <ident> without
“[<index>]”, the compiler will interpret this as if index “0” was specified. Note: the maximum array-size is 0xFFF right now.

Note all arrays are globals.

Type <type-name> User defined type
 1{byte|word <field-name> [<size>]}n //1+ byte, word and array fields
End Type
Use DIM to create variable of type <type-name>. Fields can be accessed by using the variable-name, a dot and the field-name.

Example:

 Type MyType
 byte field1
 word field2
 byte field3[5] //This field contains array of 5 bytes
 word field4[8] //This field contains array of 8 words
 End type

 Dim MyVar as new MyType
 MyVar.field1 = 3
 MyVar.field3[3]= 8

Expressions: operators: +,-,*,/,%,==,!=,AND,OR,&,|,^,>,<,>=,<=,>>,<<

NOTE: left-to-right evaluation, UNLESS "(" and ")" used to indicate priority. Note that indexing an array with a non-constant value is
treated as an expression. Expressions can be used in:

assignments
conditions (IF, WHILE, UNTIL,SELECT)
parameters of function-calls only for IN-parameters (since OUT-parameters require variables in which results are to be stored)

Events Description

Operators which do an equality compare (like ==, !=, <, <=, >, >=) result in 0 (false) or 1 (true). Compile-time calculations
support is included. e.g. “index < (10 – 1)” will result in “index < 9” being processed by the compiler. Note that a Const-definition
cannot have compile-time expressions!

Assignment: <ident> = <expression> [;] ";" is optional.

If (<expression>) then <BODY> else <BODY> end if

Note: currently elseif is not supported. However nesting of if-then-else gives the same result. Only difference is that you would get
multiple sets of end if following the outer if-then.

Example:
If (x > 10)
 S.SER_Put_string (“x-value was >10“)
else
 S.SER_Put_string (“x-value was <=10“)
End if

While (<expression>) <BODY> end while
NOTE: while (1) means "loop forever". See constant FOREVER in stdlib.nqb.

Do <BODY> until (<expression>)

For-next-step: for <variable> = <start> to <end> [step [-]<constant>]
 <BODY> //Empty body NOT allowed!
next

For-next is a short-form of a while-loop:
 <variable> = <start>
 while (<variable> < <end>) //”> <end>” when step is negative.
 <BODY>
 <variable> = <variable> + step //Note if step negative then decreases
 end while

Step is optional and defaults to 1. If <start> greater then <end> then “step” MUST be included to indicate negative stepping of
iterator <variable>.
<start> and <end> can be expressions. Loop-condition “<variable> < <end>” is evaluated every iteration. This is also true, when
<end> contains an expression, which includes other variables. (Expression will be evaluated every iteration). If the <end>
expression does not change, it is wise to assign the expression to a variable before the for-loop and use the variable as <end>. This
speeds up the loop.
See example “fordip40” for several for-next-step constructions!

Select <expression> case <constant>: <BODY> break default: <BODY> End Select
Duplicate case labels can be combined (leading to the same code-block). Multiple case-constant-values are not reported right now.
Only the block of the first case-value will be executed. Case-labels do not fall through. The break statement MUST be included (not
optional).

Example:
select X
 case 3:
 case ‘A’:
 S.SER_Put_string (“X equals 3 or 65”)
 break //break is NOT optional!
 default:
 S.SER_Put_string (“X was something else…”)
 break
end select

Sub <name> (<in|out> <byte|word> <arg-name>) <function-BODY> end sub

Example:
Sub MyFunction (in byte x)
 S.SER_Put_string (“X-value was: “)
 S.SER_Put_decimal (x)
End sub
Arguments can be of type BYTE or WORD. When calling a function, IN-parameters can be either a constant, variable or expression.
OUT-parameters can only take variables as parameter.
Task <task-body> end task
The <task-body> is similar to <function-body>. It may contain any number of statements. However, task-bodies can also include
calls to the WAIT-function. After the main-function has been executed, each task will execute –in the order as listed in the source-
files- until a WAIT-function is encountered. A task can either finish, when it reaches “end task”, after which it will never execute
again OR is paused when the WAIT-function is called. NOTE: Currently max. 10 tasks are supported.

Typically a task looks like this:
 Task
 While (FOREVER)
 //do something…
 Wait (<an event>) //allows other tasks to run
 End while
 End task

Wait (<event or expression>)

The WAIT-function is a special nqBASIC function, which makes multi-tasking possible. Compiled nqBASIC code includes a lean
event-driven multi-tasking engine, which can execute multiple tasks. When a task calls the WAIT-function, the nqBASIC scheduler
will pause the current task and check if other tasks are ready to run. This happens when the event passed to the WAIT-function has
occurred OR when an expression passed to the WAIT-function evaluates to TRUE (non-zero). If a task loops, without calling the
WAIT-function, other tasks will NEVER run. (The nqBASIC scheduler is non-preemptive). If you are using multiple tasks, while one of
the tasks does not wait for a particular event, you will have to call the WAIT-function with EVENT_IDLE as parameter regularly, to
prevent other tasks being deprived of execution.

Currently the following parameters –defined in stdlib.nqb- can be passed to the WAIT-function:

EVENT_IRQ IRQ pin (constant IRQ or PIN27) generated interrupt

EVENT_XIRQ IRQ pin (constant XIRQ or PIN28) generated interrupt

EVENT_RTI Realtime Timer overflow/expiration (See RTI-object).

EVENT_SCI Serial character received by SCI UART (See SCI-object)

EVENT_SPI SPI interrupt

EVENT_TIM Main timer overflow

EVENT_IOC0 Pin-timer overflow/expiration (See TIMIO-object).

EVENT_IOC1 Pin-timer overflow/expiration (See TIMIO-object).

EVENT_IOC2 Pin-timer overflow/expiration (See TIMIO-object).

EVENT_IOC3 Pin-timer overflow/expiration (See TIMIO-object).

EVENT_IOC4 Pin-timer overflow/expiration (See TIMIO-object).

EVENT_IOC5 Pin-timer overflow/expiration (See TIMIO-object).

EVENT_IOC6 Pin-timer overflow/expiration (See TIMIO-object).

EVENT_IOC7 Pin-timer overflow/expiration (See TIMIO-object).

EVENT_CAN CAN frame received (See CAN-object)

EVENT_IDLE Resume when no other tasks are ready for execution

 <EXPRESSION>

When the expression evaluates to a non-zero value, the task will resume execution. This

way tasks can communicate and/or wake each other up when an event occurs. e.g. one

task can assign a value to a global variable, which is used in an expression that is passed

to a WAIT-function in another task.

Main <function-body> end main
The main-function of an nqBASIC program is the first part of your program that will execute. Use it to setup global objects and data
structures used elsewhere in the program (tasks and functions). Interrupts are not enabled when the MAIN-function is called. Do
NOT use an endless loop in the main-function if you are using multiple tasks since, in that case, these tasks will never be able to
execute. If you ARE NOT using tasks, while you use objects that need interrupts (like SCI or CAN), then you probably want to
enable interrupts by calling System.INTS_On().

Objects (see API Reference) give access to internal peripherals, I/O pins, and software libraries. Objects can be instantiated by
using a DIM statement with a variable (e.g. when I/O pins are used), but can also have class-functions, which can be called
regardless of an instantiated object, by using the class-name.

Class functions are called with: "<class-name>." in front of the function-name.

Example:
 System.Delay (100) ‘100microsecond delay

Object functions are called with: "<object-variable name>." in front of the function-name. (The dim statement must have been used
to create the object with the variable name).

Example:

Const PIN1 = 1
Const HIGH = 1
Dim D as new DIO (PIN1)
Main

D.PIN_Out (PIN1, HIGH)
End Main

